• Title/Summary/Keyword: dynamic sensitivity

Search Result 981, Processing Time 0.033 seconds

A Structural Eigenderivative Analysis by Modification of Design Parameter (설계파라미터 변경에 따른 구조물의 동특성 변화 해석)

  • Lee, Jeong-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.739-744
    • /
    • 2002
  • This study predicts the modified structural eigenvectors and eigenvalues due to the change in the mass and stiffness of a structure by iterative calculation of the sensitivity coefficient using the original dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom lumped mass model by modifing the mass and stillness. The predicted dynamic characteristics are in good agreement with these from the structural reanalysis using the modified mass and stiffness.

Prediction of Changed Design Parameter of Proportional Damping Structure by Using Modified Dynamic Characteristics (동특성 변화를 이용하여 비례감쇠 구조물의 변경된 설계파라미터 예측)

  • Lee, Jung-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.873-879
    • /
    • 2010
  • It is common to predict structural dynamic design parameters due to the change of design parameter, but to predict the amount of changed design parameter where the mass and stiffness are being modified are rarely found in previous literature. In this study, the changed design parameter in a proportional damping system is predicted by using sensitivity coefficients and an iterative method. The sensitivity coefficients are determined from the changes in eigenvectors; these changes are due to modification. This method is applied to a three-story shear structure. To validate the prediction of the changed design parameter, the results are compared to the reanalysis results; both results are in good agreement.

A Study on Optimum Modification of Dynamic Characteristics of Stiffened Plate Using Simplified Equation of Natural Frequency (고유진동수의 간이 추정식을 이용한 보강판 구조물의 동특성의 최적변경에 관한 연구)

  • 박성현;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.48-58
    • /
    • 2002
  • There is a purpose of this study for the proposal of the optimum technique utilized for the vibration design initial step. The stiffened plate structure for the ship hull is made for analysis model. To begin with, dynamic characteristics of stiffened plate structure is analysed using FEM. Main vibrational mode of the structure is decided in the analytical result of FEM. The simplified equation on the natural frequency of the main vibrational mode is induced. Next, sensitivity analysis is carried out using the simplified equation, and rate of change of dynamic characteristics is calculated. Then, amount of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of panel, cross section moment of stiffener and girder become a design variable. The validity of the optimization method using simplified equation is examined. It is shown that the result effective in the optimum modification for natural frequency of the stiffened plate structure.

Damage identification of vehicle-track coupling system from dynamic responses of moving vehicles

  • Zhu, Hong-Ping;Ye, Ling;Weng, Shun;Tian, Wei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.677-686
    • /
    • 2018
  • The structural responses are often used to identify the structural local damages. However, it is usually difficult to gain the responses of the track, as the sensors cannot be installed on the track directly. The vehicles running on a track excite track vibration and can also serve as response receivers because the vehicle dynamic response contains the vibration information of the track. A damage identification method using the vehicle responses and sensitivity analysis is proposed for the vehicle-track coupling system in this paper. Different from most damage identification methods of vehicle-track coupling system, which require the structural responses, only the vehicle responses are required in the proposed method. The local damages are identified by a sensitivity-based model updating process. In the vehicle-track coupling system, the track is modeled as a discrete point supported Euler-Bernoulli beam, and two vehicle models are proposed to investigate the accuracy and efficiency of damage identification. The measured track irregularity is considered in the calculation of vehicle dynamic responses. The measurement noises are also considered to study their effects to the damage identification results. The identified results demonstrate that the proposed method is capable to identify the local damages of the track accurately in different noise levels with only the vehicle responses.

Shape Design Sensitivity Analysis Case of the Valves installed in the Hydraulic Driving Motor (사판식 구동모터에 장착된 밸브의 설계변수 민감도 해석 사례)

  • Noh, Dae-Kyung;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.81-87
    • /
    • 2013
  • This paper is about study how to decrese surge pressure that is occurred in excavator driving motor. We used computer simulation program SimulationX. It is also about the way finding design problem and approaching a solution through interpreting shape design sensitivity analysis. Programmes are below. First of all, finding shape fault by analyzing dynamic behavior of valves installed in hydraulic driving motor which is designed now. And drawing variable which is considered sensitive to improve dynamic efficiency among a lot of shape variables. Then, targeting that variable and examining dynamic efficiency stabilization tendency with controlling it. Finally, suggesting the most effective tuning method through variable combination as there are a lot of sensitive variables.

Structural damage and force identification under moving load

  • Zhu, Hongping;Mao, Ling;Weng, Shun;Xia, Yong
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.261-276
    • /
    • 2015
  • Structural damage and moving load identification are the two aspects of structural system identification. However, they universally coexist in the damaged structures subject to unknown moving load. This paper proposed a dynamic response sensitivity-based model updating method to simultaneously identify the structural damage and moving force. The moving force which is equivalent as the nodal force of the structure can be expressed as a series of orthogonal polynomial. Based on the system Markov parameters by the state space method, the dynamic response and the dynamic response derivatives with respect to the force parameters and elemental variations are analytically derived. Afterwards, the damage and force parameters are obtained by minimizing the difference between measured and analytical response in the sensitivity-based updating procedure. A numerical example for a simply supported beam under the moving load is employed to verify the accuracy of the proposed method.

Linear-logarithmic Active Pixel Sensor with Photogate for Wide Dynamic Range CMOS Image Sensor

  • Bae, Myunghan;Jo, Sung-Hyun;Choi, Byoung-Soo;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.79-82
    • /
    • 2015
  • This paper proposes a novel complementary metal oxide semiconductor (CMOS) active pixel sensor (APS) and presents its performance characteristics. The proposed APS exhibits a linear-logarithmic response, which is simulated using a standard $0.35-{\mu}m$ CMOS process. To maintain high sensitivity and improve the dynamic range (DR) of the proposed APS at low and high-intensity light, respectively, two additional nMOSFETs are integrated into the structure of the proposed APS, along with a photogate. The applied photogate voltage reduces the sensitivity of the proposed APS in the linear response regime. Thus, the conversion gain of the proposed APS changes from high to low owing to the addition of the capacitance of the photogate to that of the sensing node. Under high-intensity light, the integrated MOSFETs serve as voltage-light dependent active loads and are responsible for logarithmic compression. The DR of the proposed APS can be improved on the basis of the logarithmic response. Furthermore, the reference voltages enable the tuning of the sensitivity of the photodetector, as well as the DR of the APS.

Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation (직접미분법을 이용한 현가장치의 기구학적 민감도해석)

  • 민현기;탁태오;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF

Constructing Overhauser Dynamic Nuclear Polarization-Nuclear Magnetic Resonance System Using Benchtop Electron Paramagnetic Resonance Spectrometer

  • Saun, Seung-Bo;Kim, JiWon;Han, Oc Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The Nuclear Magnetic Resonance (NMR) technique using Dynamic Nuclear Polarization (DNP) procedures is one of the promising techniques that enable overcoming low sensitivity problems in NMR spectroscopy. We constructed an ODNP-NMR system using a commercial benchtop EPR spectrometer. The $^1H$ NMR peak area of water in aqueous solutions of 4-hydroxy-TEMPO was enhanced more than 95 times in the ODNP-NMR experiments. Our signal enhancement results were about 55% of the previously reported result. This could be due to non-uniform microwave power over a sample and unwanted sample heating by microwave. However, this portable ODNP-NMR spectrometer will be eventually useful for site-specific detection with nano-scale spatial resolutions and molecular dynamics studies with significantly improved signal sensitivity.