• 제목/요약/키워드: dynamic seismic analysis

검색결과 1,388건 처리시간 0.025초

Pseudo-dynamic approach of seismic earth pressure behind cantilever retaining wall with inclined backfill surface

  • Giri, Debabrata
    • Geomechanics and Engineering
    • /
    • 제3권4호
    • /
    • pp.255-266
    • /
    • 2011
  • Knowledge of seismic earth pressure against rigid retaining wall is very important. Mononobe-Okabe method is commonly used, which considers pseudo-static approach. In this paper, the pseudo-dynamic method is used to compute the distribution of seismic earth pressure on a rigid cantilever retaining wall supporting dry cohesionless backfill. Planar rupture surface is considered in the analysis. Effect of various parameters like wall friction angle, soil friction angle, shear wave velocity, primary wave velocity, horizontal and vertical seismic accelerations on seismic earth pressure have been studied. Results are presented in terms of tabular and graphical non-dimensional form.

진동대시험에 근거한 댐의 내진설계시 해석 방법의 비교 (The Comparision of Analysis Methods in dynamic Design of Dam based on Shaking Table tests)

  • 황성춘;오병현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.732-737
    • /
    • 2005
  • This paper performed pseudo static analysis and dynamic analysis for CFRD and evaluated reliability with the results of Shaking Table Test. The Seismic coefficient method, modified seismic coefficient method, Newmark method of Pseudo static analysis and frequency domain response analysis, time domain history analysis of dynamic analysis were used. The analysis results were differ between analysis method, but the trends of acceleration and displacement were good agreement with the results of shaking table test.

  • PDF

Time-dependent seismic risk analysis of high-speed railway bridges considering material durability effects

  • Yan Liang;Ying-Ying Wei;Ming-Na Tong;Yu-Kun Cui
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.275-288
    • /
    • 2023
  • Based on the crucial role of high-speed railway bridges (HSRBs) in the safety of high-speed railway operations, it is an important approach to mitigate earthquake hazards by proceeding with seismic risk assessments in their whole life. Bridge seismic risk assessment, which usually evaluates the seismic performance of bridges from a probabilistic perspective, provides technical support for bridge risk management. The seismic performance of bridges is greatly affected by the degradation of material properties, therefore, material damage plays a nonnegligible role in the seismic risk assessment of the bridge. The effect of material damage is not considered in most current studies on seismic risk analysis of bridges, nevertheless. To fill the gap in this area, in this paper, a nonlinear dynamic time-history analysis has been carried out by establishing OpenSees finite element model, and a seismic vulnerability analysis is carried out based on the incremental dynamic analysis (IDA) method. On this basis, combined with the site risk analysis, the time-dependent seismic risk analysis of an offshore three-span HSRB in the whole life cycle has been conducted. The results showed that the seismic risk probabilities of both components and system of the bridge increase with the service time, and their seismic risk probabilities increase significantly in the last service period due to the degradation of the material strength, which demonstrates that the impact of durability damage should be considered when evaluating the seismic performance of bridges in the design and service period.

Effect of seismic design level on safety against progressive collapse of concentrically braced frames

  • Rezvani, Farshad Hashemi;Asgarian, Behrouz
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.135-156
    • /
    • 2014
  • In this research the effect of seismic design level as a practical approach for progressive collapse mitigation and reaching desired structural safety against it in seismically designed concentric braced frame buildings was investigated. It was achieved by performing preliminary and advanced progressive collapse analysis of several split-X braced frame buildings, designed for each seismic zone according to UBC 97 and by applying various Seismic Load Factors (SLFs). The outer frames of such structures were studied for collapse progression while losing one column and connected brace in the first story. Preliminary analysis results showed the necessity of performing advanced element loss analysis, consisting of Vertical Incremental Dynamic Analysis (VIDA) and Performance-Based Analysis (PBA), in order to compute the progressive collapse safety of the structures while increasing SLF for each seismic zone. In addition, by sensitivity analysis it became possible to introduce the equation of structural safety against progressive collapse for concentrically braced frames as a function of SLF for each seismic zone. Finally, the equation of progressive collapse safety as a function of bracing member capacity was presented.

유한요소법을 이용한 수평형 다단원심펌프의 내진해석 (Seismic Analysis of Horizontal-Type Multi-Stage Centrifugal Pump using Finite Element Method)

  • 조진래;이홍우;김민정;하세윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.790-796
    • /
    • 2003
  • As a fluid machinery for piping liquid in the reactor cooling system, multi-stage centrifugal pump requires the structural dynamic stability against external dynamic excitation. This paper is concerned with the finite element analysis of its eigen behavior and seismic response to RRS(Required Response Spectrum) curves in the case of SSE (Safe Shutdown Earthquake). Through the finite element analysis, the major vibration characteristics of multi-stage centrifugal pump(MSCP) are investigated and seismic qualification based on the IEEE codes is executed. The numerical results show that the MSCP used in this study has enough seismic strength.

지진 하중을 받는 홍예교의 아치 형태에 따른 동적 거동 특성 (Dynamic Behavior Characteristics According to Arch Types of Arched Stone Bridge Subjected to Seismic Load)

  • 김호수;이승희;전건우;방혁규
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.45-55
    • /
    • 2018
  • The arched stone bridge has been continuously deteriorated and damaged by the weathering and corrosion over time, and also natural disaster such as earthquake has added the damage. However, masonry stone bridge has the behavior characteristics as discontinuum structure and is very vulnerable to lateral load such as earthquake. So, it is necessary to analyze the dynamic behavior characteristics according to various design variables of arched stone bridge under seismic loads. To this end, the arched stone bridge can be classified according to arch types, and then the discrete element method is applied for the structural modelling and analysis. In addition, seismic loads according to return periods are generated and the dynamic analysis considering the discontinuity characteristics is carried out. Finally, the dynamic behavior characteristics are evaluated through the structural safety estimation for slip condition.

Wave passage effect of seismic ground motions on the response of multiply supported structures

  • Zhang, Y.H.;Lin, J.H.;Williams, F.W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.655-672
    • /
    • 2005
  • Seismic random responses due to the wave passage effect are extensively investigated by using the pseudo excitation method (PEM). Two examples are used. The first is very simple but also very informative, while the second is a realistic suspension bridge. Numerical results show that the seismic responses vary significantly with wave speed, especially for low velocity or large span. Such variations are not monotonic, especially for flexible structures. The contributions of the dynamic and quasi-static components depend heavily on the seismic wave velocity and the natural frequencies of structures. For the lower natural frequency cases, the dynamic component has significant effects on the dynamic responses of the structure, whereas the quasi-static component dominates for higher natural frequencies unless the wave speed is also high. It is concluded that if insufficient data on local seismic wave velocity is available, it is advisable to select several possible velocity values in the seismic analysis and to choose the most conservative of the results thus obtained as the basis for design.

비선형 동적해석을 이용한 소규모 필로티형 철근콘크리트 건축물의 내진성능평가 (Seismic Performance Evaluation of Small-size Pilloti-type Reinforced Concrete Buildings using Nonlinear Dynamic Analysis)

  • 유창환;김태완;추유림
    • 한국지진공학회논문집
    • /
    • 제20권4호
    • /
    • pp.191-199
    • /
    • 2016
  • Piloti-type building is one of typical vertical atypical buildings. These buildings can fail by weak-story or flexible-story mechanism on the first story. They should be designed by taking into account the special seismic load, but those less than six stories are not required to confirm the seismic performance from structural engineers in Korea. For this reason, small-size pilloti-type RC buildings need to be checked for seismic performance. Based on this background, this study performed nonlinear dynamic analysis using the PERFORM-3D for small-size pilloti-type RC buildings and assessed their seismic performance. Examples are two through four story buildings with and without walls in the first story. The walls and columns in the first story satisfied the target performance in the basic of flexural behavior due to quite a large size and reinforcement. However, wall shear demands exceed shear strength in some buildings. When designed for KBC2009, wall shear strength exceed shear demand in some buildings, but still does not in others. Consequently, wall shear must be carefully checked in both existing and new small-size pilloti-type RC buildings.

Performance-based evaluation of strap-braced cold-formed steel frames using incremental dynamic analysis

  • Davani, M.R.;Hatami, S.;Zare, A.
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1369-1388
    • /
    • 2016
  • This study is an effort to clearly recognize the seismic damages occurred in strap-braced cold formed steel frames. In order to serve this purpose, a detailed investigation was conducted on 9 full scale strap-braced CFS walls and the required data were derived from the results of the experiments. As a consequence, quantitative and qualitative damage indices have been proposed in three seismic performance levels. Moreover, in order to assess seismic performance of the strap-braced CFS frames, a total of 8 models categorized into three types are utilized. Based on the experimental results, structural characteristics are calculated and all frames have been modeled as single degree of freedom systems. Incremental dynamic analysis using OPENSEES software is utilized to calculate seismic demand of the strap-braced CFS walls. Finally, fragility curves are calculated based on three damage limit states proposed by this paper. The results showed that the use of cladding and other elements, which contribute positively to the lateral stiffness and strength, increase the efficiency of strap-braced CFS walls in seismic events.

Seismic performance of a wall-frame air traffic control tower

  • Moravej, Hossein;Vafaei, Mohammadreza;Abu Bakar, Suhaimi
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.463-482
    • /
    • 2016
  • Air Traffic Control (ATC) towers play significant role in the functionality of each airport. In spite of having complex dynamic behavior and major role in mitigating post-earthquake problems, less attention has been paid to the seismic performance of these structures. Herein, seismic response of an existing ATC tower with a wall-frame structural system that has been designed and detailed according to a local building code was evaluated through the framework of performance-based seismic design. Results of this study indicated that the linear static and dynamic analyses used for the design of this tower were incapable of providing a safety margin for the required seismic performance levels especially when the tower was subjected to strong ground motions. It was concluded that, for seismic design of ATC towers practice engineers should refer to a more sophisticated seismic design approach (e.g., performance-based seismic design) which accounts for inelastic behavior of structural components in order to comply with the higher seismic performance objectives of ATC towers.