• Title/Summary/Keyword: dynamic seismic analysis

Search Result 1,389, Processing Time 0.028 seconds

Impact Analysis of Seismic Load on the Design of Turbine-Generator Foundations (지진하중이 터빈-발전기 기초의 설계에 미치는 영향)

  • 김재석;조양회;안대호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.224-231
    • /
    • 2003
  • The purpose of this study is to review and validate the seismic analysis procedures of turbine-generator foundation specified in the Korea Building Code which adopts equivalent static analysis. Typical machines and foundations were chosen and various kinds of parametric studies were peformed and the results were compared with the detail dynamic analysis. The general trend of the study results showed that the most of the computed responses of equivalent static analysis are smaller than those of the dynamic analyses(response spectrum analysis and time history analysis), which implies the existing seismic analysis technique using the existing Building Code may give unconservative design results. The results also showed that the seismic loads are one of the governing design parameters of the turbine-generator foundations.

  • PDF

Improved Evaluation for the Seismic Capacity of Concrete Gravity Dams (콘크리트 중력식 댐의 향상된 내진성능 평가방법)

  • Kim, Yon-Gon;Kwon, Hyek-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.1-14
    • /
    • 2004
  • The objective of this study is firstly to frame up the seismic safety of concrete gravity dams. It is necessary to analyze seismic response and evaluate seismic performance of concrete gravity dams during earthquake. In this study, seismic damage and dynamic analysis of concrete gravity dams using structural analysis package such as SAP2000 and MIDAS were performed. Additional dynamic water pressure due to earthquake considered as additional mass for numerical seismic analysis. According detailed analysis, the vibration through the dam structure (transverse to water flow) seems to be very critical depending on the shape of the dam. For more precise evaluation of seismic fragility of concrete gravity dams, further research is still needed.

Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis

  • Khorami, Majid;Khorami, Masoud;Motahar, Hedayatollah;Alvansazyazdi, Mohammadfarid;Shariati, Mahdi;Jalali, Abdolrahim;Tahir, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.259-268
    • /
    • 2017
  • In this paper, the incremental nonlinear dynamic analysis is used to evaluate the seismic performance of steel moment frame structures. To this purpose, three special moment frame structure with 5, 10 and 15 stories are designed according to the Iran's national building code for steel structures and the provisions for design of earthquake resistant buildings (2800 code). Incremental Nonlinear Analysis (IDA) is performed for 15 different ground motions, and responses of the structures are evaluated. For the immediate occupancy and the collapse prevention performance levels, the probability that seismic demand exceeds the seismic capacity of the structures is computed based on FEMA350. Also, fragility curves are plotted for three high-code damage levels using HASUS provisions. Based on the obtained results, it is evident that increase in the height of the frame structures reduces the reliability level. In addition, it is concluded that for the design earthquake the probability of exceeding average collapse prevention level is considerably larger than high and full collapse prevention levels.9.

Evaluation of Dynamic Behavior for Pile-Supported Slab Track System by 3D Numerical Analysis (3차원 수치해석을 통한 궤도지지말뚝의 동적거동 평가)

  • Yoo, Mintaek;Back, Mincheol;Lee, Ilhwa;Lee, Jinsun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.255-264
    • /
    • 2017
  • Dynamic numerical simulation of pile-supported slab track system embedded in a soft soil and embankment was performed. 3D model was formulated in a time domain to consider the non-linearity of soil by utilizing FLAC 3D, which is a finite difference method program. Soil non-linearity was simulated by adopting the hysteric damping model and liner elements, which could consider soil-pile interface. The long period seismic loads, Hachinohe type strong motions, were applied for estimating seismic respose of the system, Parametric study was carried out by changing subsoil layer profile, embankment height and seismic loading conditions. The most of horizontal permanent displacement was initiated by slope failure. Increase of the embedded height and thickness of the soft soil layer leads increase of member forces of PHC piles; bending moment, and axial force. Finally, basic guidelines for designing pile-supported slab track system under seismic loading are recommended based on the analysis results.

Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path

  • Tubaldi, E.;Barbato, M.;Dall'Asta, A.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.21-41
    • /
    • 2010
  • Multi-span steel-concrete composite (SCC) bridges are very sensitive to earthquake loading. Extensive damage may occur not only in the substructures (piers), which are expected to yield, but also in the other components (e.g., deck, abutments) involved in carrying the seismic loads. Current seismic codes allow the design of regular bridges by means of linear elastic analysis based on inelastic design spectra. In bridges with superstructure transverse motion restrained at the abutments, a dual load path behavior is observed. The sequential yielding of the piers can lead to a substantial change in the stiffness distribution. Thus, force distributions and displacement demand can significantly differ from linear elastic analysis predictions. The objectives of this study are assessing the influence of piers-deck stiffness ratio and of soil-structure interaction effects on the seismic behavior of continuous SCC bridges with dual load path, and evaluating the suitability of linear elastic analysis in predicting the actual seismic behavior of these bridges. Parametric analysis results are presented and discussed for a common bridge typology. The response dependence on the parameters is studied by nonlinear multi-record incremental dynamic analysis (IDA). Comparisons are made with linear time history analysis results. The results presented suggest that simplified linear elastic analysis based on inelastic design spectra could produce very inaccurate estimates of the structural behavior of SCC bridges with dual load path.

Dynamic Response Analysis of 200m Honeycomb Lattice Domes by Rise Span Ratio (라이즈 스팬 비에 의한 200m 허니컴 래티스 돔의 동적 응답 분석)

  • Park, Kang-Geun;Chung, Mi-Ja
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.51-61
    • /
    • 2019
  • The objective of this study is to analysis the seismic response of 200m spanned honeycomb lattice domes under horizontal and up-down ground motion of El Centro earthquake. For the analysis of seismic response of the honeycomb lattice domes by rise/span ratio, the time history analysis is used for the estimation of the dynamic response. The low rise lattice dome is less deformed and less stressed than the high rise lattice dome for the earthquake ground motion. The 3-dimensional earthquake response is not significantly different the dynamic response of one directional ground motion. The earthquake response of domes with LRB isolation system is significantly reduced for the asymmetric vertical deformation and the horizontal and vertical accelerations.

Seismic Object Performance Evaluation of Braced Steel Moment Resisting Frames with Low Rise Building under Different Site Stiffness (지반강성을 고려한 중저층 가새모멘트저항골조의 내진 목표성능평가)

  • Kim, Soo Jung;Choi, Byong Jeong;Park, Ho Young;Lee, Jinwoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.91-101
    • /
    • 2016
  • This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.

Seismic assessment of a R/C strategic existing building

  • Mehani, Youcef;Kibboua, Abderrahmane
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.617-634
    • /
    • 2007
  • Algeria is a country with a high seismic activity. During the last decade, many destructive earthquakes occurred, particularly in the northern part, causing enormous losses in human lives, buildings and equipments. In order to reduce this risk in the capital and avoid serious damages to the strategic existing buildings, the government decided to invest into seismic upgrade, strengthening and retrofitting of these buildings. In doing so, seismic vulnerability study of this category of buildings has been considered. Structural analysis is performed on the basis of site investigation (inspection of the building, collecting data, materials, general conditions of the building, etc), and existing drawings (architectural plans, structural design, etc). The aim of these seismic vulnerability studies is to develop guidelines and a methodology for rehabilitation of existing buildings. This paper will provide insight to the vulnerability assessment and strengthening of the telecommunication centre, according to the new code RPA 99/version 2003. Both, static equivalent method and non linear dynamic analysis are performed in this study.

Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads

  • Sharma, R.K.;Domala, V.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.369-390
    • /
    • 2019
  • Herein, we present numerical simulation based model to study the use of a 'Tuned Mass Damper (TMD)' - particularly spring mass systems - to control the displacements at the deck level under seismic and ice loads for an offshore jacket structure. Jacket is a fixed structure and seismic loads can cause it to vibrate in the horizontal directions. These motions can disintegrate the structure and lead to potential failures causing extensive damage including environmental hazards and risking the lives of workers on the jacket. Hence, it is important to control the motion of jacket because of earthquake and ice loads. We analyze an offshore jacket platform with a tuned mass damper under the earthquake and ice loads and explore different locations to place the TMD. Through, selected parametric variations a suitable location for the placement of TMD for the jacket structure is arrived and this implies the design applicability of the present research. The ANSYS*TM mechanical APDL software has been used for the numerical modeling and analysis of the jacket structure. The dynamic response is obtained under dynamic seismic and ice loadings, and the model is attached with a TMD. Parameters of the TMD are studied based on the 'Principle of Absorption (PoA)' to reduce the displacement of the deck level in the jacket structure. Finally, in our results, the proper mass ratio and damping ratios are obtained for various earthquake and ice loads.

The Analysis for Dynamic Behavior Characteristics of Concrete Gravity Dams (콘크리트 중력식 댐의 동적 거동 특성 분석)

  • Koo Min-Se;Park Kuk-Dong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.393-399
    • /
    • 2005
  • The purpose of this study is to suggest some references of maintenance and design of concrete gravity dams by analyzing dynamic characteristics in x, y, z directions. It is considered as additional mass, soil interaction for numerical dynamic analysis for gravity concrete dams in Han River basin as some cases. The result shows that the overflow structure can be possibly underestimated for the evaluation of the seismic performance using seismic intensity, modified seismic intensity methods. A much more research is still necessary for the evaluation of comprehensive seismic performance of concrete gravity dam

  • PDF