• Title/Summary/Keyword: dynamic science assessment

Search Result 184, Processing Time 0.025 seconds

A Study on sensibility of Web page (웹 페이지의 감성에 관한 연구)

  • 선지현;조경자;한광희
    • Science of Emotion and Sensibility
    • /
    • v.6 no.4
    • /
    • pp.33-40
    • /
    • 2003
  • This research was conducted to propose a sensibility model for web site design. At first, we collected 100 sensibility words related to web site design through analysis of journal and questionnaires and analysis of dictionary. 16 web sites were rated according to the degree of sensibility corresponding to each words, on the basis of the Semantic Differential(SD) method. The results of assessment were analyzed by means of the factor analysis and Multidimensional Scaling(MDS) method. From this relational analysis of sensibility words, the 18 representative words were abstracted as a result of the research included unique, unusual, rich, soft, cold, warm, vivid, simple, neat, dynamic, urban, light, somber, bright, dark, fresh, masculine, and hard. Also three sensibility dimensions bright-dark, soft-hard, simple-rich were found.

  • PDF

Stochastic Behavior of Plant Water Stress Index and the Impact of Climate Change (식생 물 부족 지수의 추계학적 거동과 기후변화가 그에 미치는 영향)

  • Han, Suhee;Yoo, Gayoung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.507-514
    • /
    • 2009
  • In this study, a dynamic modeling scheme is presented to describe the probabilistic structure of soil water and plant water stress index under stochastic precipitation conditions. The proposed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress index is investigated under a climate change scenario. The simulation results of soil water confirm that the proposed soil water model can properly reproduce the observations and show that the soil water behaves with consistent cycle based on the precipitation pattern. The simulation results of plant water stress index show two different PDF patterns according to the precipitation. The simple impact assessment of climate change to soil water and plant water stress is discussed with Korean Meteorological Administration regional climate model.

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.

Modal parameters based structural damage detection using artificial neural networks - a review

  • Hakim, S.J.S.;Razak, H. Abdul
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.159-189
    • /
    • 2014
  • One of the most important requirements in the evaluation of existing structural systems and ensuring a safe performance during their service life is damage assessment. Damage can be defined as a weakening of the structure that adversely affects its current or future performance which may cause undesirable displacements, stresses or vibrations to the structure. The mass and stiffness of a structure will change due to the damage, which in turn changes the measured dynamic response of the system. Damage detection can increase safety, reduce maintenance costs and increase serviceability of the structures. Artificial Neural Networks (ANNs) are simplified models of the human brain and evolved as one of the most useful mathematical concepts used in almost all branches of science and engineering. ANNs have been applied increasingly due to its powerful computational and excellent pattern recognition ability for detecting damage in structural engineering. This paper presents and reviews the technical literature for past two decades on structural damage detection using ANNs with modal parameters such as natural frequencies and mode shapes as inputs.

Investigation of MRS and SMA Dampers Effects on Bridge Seismic Resistance Employing Analytical Models

  • Choi, Eunsoo;Jeon, Jong-Su;Kim, Woo Jin;Kang, Joo-Won
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1325-1335
    • /
    • 2018
  • This study dealt with investigating the seismic performance of the smart and shape memory alloy (SMA) and magnets plus rubber-spring (MRS) dampers and their effects on the seismic resistance of multiple-span simply supported bridges. The rubber springs in the MRS dampers were pre-compressed. For this aim, a set of experimental works was performed together with developing nonlinear analytical models to investigate dynamic responses of the bridges subjected to earthquakes. Fragility analysis and probabilistic assessment were conducted to assess the seismic performance for the overall bridge system. Fragility curves were then generated for each model and were compared with those of as-built. Results showed dampers could increase the seismic capacity of bridges. Furthermore, from system fragility curves, use of damper models reduced the seismic vulnerability in comparison to the as-built bridge model. Although the SMA damper showed the best seismic performance, the MRS damper was the most appropriate one for the bridge in that the combination of magnetic friction and pre-compressed rubber springs was cheaper than the shape memory alloy, and had the similar capability of the damper.

Risk Assessment of Offshore Wind Turbine Support Structures Considering Scouring (세굴을 고려한 해상풍력터빈 지지구조물 위험도 평가)

  • Kim, Young Jin;Lee, Dae Yong;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.524-530
    • /
    • 2020
  • The risk of offshore wind turbine support structures by scour has been proposed. The proposed utilize probabilities of scour depths and fragilities according to scour depth and a modification of a seismic risk analysis method. The probability distribution of scour depth was calculated using a equation which is suitable to consider marine environmental conditions such as significant wave height, significant period, and current velocity, and dynamic analysis was performed on an offshore wind turbine equipped with an suction bucket to find fragility. Then, the risk of offshore wind turbine support structure considering scour can be found by integrating the scour probability and the fragility.

A Fuzzy Analytic Hierarchy Process (FAHP) Based on SERVQUAL for Hotel Service Quality Management: Evidence from Vietnam

  • NGUYEN, Phi-Hung
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.1101-1109
    • /
    • 2021
  • Nowadays, quality affects product or service performance and customer loyalty in the competitive business' environment. This is truly important when it comes to how the customer interprets the service's satisfaction and the judgment of the purchase process as a whole, in view of the fact that service quality is an abstract and elusive construction due to the three characteristics of services: intangibility, heterogeneity, and inseparability of output and consumption. The main purpose of this paper is to determine the hotel service quality using the Fuzzy Analytic Hierarchy Process (FAHP) and SERVQUAL method. In this study, a five-star hotel's real case is considered in evaluating the service quality criteria. The results revealed that Tangibles and Assurance are the most critical service quality criteria in the hotel industry. Accurate records, service consistency, Necessary arrangements for disabled people, Service flexibility to guests' demands, and Providing the services at the time it promises are the most influencing sub-criteria of service quality. These findings indicate that hotels should concentrate on sequentially and organized priority factors to enhance service quality. This method of service quality assessment may also aid in distinguishing between hotels. Finally, as a future direction, more additional parameters can be used as a potential guide in our proposed model for the dynamic decision-making approach.

Development of Empirical Formulas for Approximate Spectral Moment Based on Rain-Flow Counting Stress-Range Distribution

  • Jun, Seockhee;Park, Jun-Bum
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.257-265
    • /
    • 2021
  • Many studies have been performed to predict a reliable and accurate stress-range distribution and fatigue damage regarding the Gaussian wide-band stress response due to multi-peak waves and multiple dynamic loads. So far, most of the approximation models provide slightly inaccurate results in comparison with the rain-flow counting method as an exact solution. A step-by-step study was carried out to develop new approximate spectral moments that are close to the rain-flow counting moment, which can be used for the development of a fatigue damage model. Using the special parameters and bandwidth parameters, four kinds of parameter-based combinations were constructed and estimated using the R-squared values from regression analysis. Based on the results, four candidate empirical formulas were determined and compared with the rain-flow counting moment, probability density function, and root mean square (RMS) value for relative distance. The new approximate spectral moments were finally decided through comparison studies of eight response spectra. The new spectral moments presented in this study could play an important role in improving the accuracy of fatigue damage model development. The present study shows that the new approximate moment is a very important variable for the enhancement of Gaussian wide-band fatigue damage assessment.

Cyclic Triaxial Test on Undisturbed Sample in the Fine-Grained Soils that Experienced Ground Settlement by Earthquake Loading and Improving Korean Method for Liquefaction Potential Assessment (지진시 지반침하가 발생한 세립토지반의 불교란시료를 대상으로 한 반복삼축시험의 수행과 국내 액상화 평가법의 제고)

  • Choi, Jae Soon;Baek, Woo Hyun;Jin, Yoon Hong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • In the case of the Pohang earthquake, which had a magnitude of 5.4 in 2017, geotechnical damages such as liquefaction and ground settlement occurred. The need for countermeasures has emerged, and experimental research in the Pohang area has continued. This study collected undisturbed samples from damaged fine-grained soil areas where ground settlement occurred in Pohang. Cyclic tri-axial tests for identifying the dynamic characteristics of soils were performed on the undisturbed samples, and the results were analyzed to determine the cause of ground settlement. As a result of the study, it was determined that in the case of fine-grained soils, ground settlement occurred because the seismic load as an external force was relatively more significant than the shear resistance of the very soft fine-grained soils, rather than due to an increase in excess pore water pressure.

Geoid Determination in South Korea from a Combination of Terrestrial and Airborne Gravity Anomaly Data

  • Jekeli, Christopher;Yang, Hyo Jin;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.567-576
    • /
    • 2013
  • The determination of the geoid in South Korea is a national imperative for the modernization of height datums, specifically the orthometric height and the dynamic height, that are used to monitor hydrological systems and environments with accuracy and easy revision, if necessary. The geometric heights above a reference ellipsoid, routinely obtained by GPS, lead immediately to vertical control with respect to the geoid for hydrological purposes if the geoid height above the ellipsoid is known accurately. The geoid height is determined from gravimetric data, traditionally ground data, but in recent times also from airborne data. This paper illustrates the basic concepts for combining these two types of data and gives a preliminary performance assessment of either set or their combination for the determination of the geoid in South Korea. It is shown that the most critical aspect of the combination is the gravitational effect of the topographic masses above the geoid, which, if not properly taken into account, introduces a significant bias of about 8 mgal in the gravity anomalies, and which can lead to geoid height bias errors of up to 10 cm. It is further confirmed and concluded that achieving better than 5 cm precision in geoid heights from gravimetry remains a challenge that can be surmounted only with the proper combination of terrestrial and airborne data, thus realizing higher data resolution over most of South Korea than currently available solely from the airborne data.