• 제목/요약/키워드: dynamic scheduling

검색결과 524건 처리시간 0.024초

Deep Learning Based Security Model for Cloud based Task Scheduling

  • Devi, Karuppiah;Paulraj, D.;Muthusenthil, Balasubramanian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3663-3679
    • /
    • 2020
  • Scheduling plays a dynamic role in cloud computing in generating as well as in efficient distribution of the resources of each task. The principle goal of scheduling is to limit resource starvation and to guarantee fairness among the parties using the resources. The demand for resources fluctuates dynamically hence the prearranging of resources is a challenging task. Many task-scheduling approaches have been used in the cloud-computing environment. Security in cloud computing environment is one of the core issue in distributed computing. We have designed a deep learning-based security model for scheduling tasks in cloud computing and it has been implemented using CloudSim 3.0 simulator written in Java and verification of the results from different perspectives, such as response time with and without security factors, makespan, cost, CPU utilization, I/O utilization, Memory utilization, and execution time is compared with Round Robin (RR) and Waited Round Robin (WRR) algorithms.

Performance Evaluation of Gang Scheduling Policies with Migration in a Grid System

  • Ro, Cheul-Woo;Cao, Yang
    • International Journal of Contents
    • /
    • 제6권4호
    • /
    • pp.30-34
    • /
    • 2010
  • Effective job scheduling scheme is a crucial part of complex heterogeneous distributed systems. Gang scheduling is a scheduling algorithm for grid systems that schedules related grid jobs to run simultaneously on servers in different local sites. In this paper, we address grid jobs (gangs) schedule modeling using Stochastic reward nets (SRNs), which is concerned for static and dynamic scheduling policies. SRN is an extension of Stochastic Petri Net (SPN) and provides compact modeling facilities for system analysis. Threshold queue is adopted to smooth the variations of performance measures. System throughput and response time are compared and analyzed by giving reward measures in SRNs.

An Efficient Scheduling Method for Grid Systems Based on a Hierarchical Stochastic Petri Net

  • Shojafar, Mohammad;Pooranian, Zahra;Abawajy, Jemal H.;Meybodi, Mohammad Reza
    • Journal of Computing Science and Engineering
    • /
    • 제7권1호
    • /
    • pp.44-52
    • /
    • 2013
  • This paper addresses the problem of resource scheduling in a grid computing environment. One of the main goals of grid computing is to share system resources among geographically dispersed users, and schedule resource requests in an efficient manner. Grid computing resources are distributed, heterogeneous, dynamic, and autonomous, which makes resource scheduling a complex problem. This paper proposes a new approach to resource scheduling in grid computing environments, the hierarchical stochastic Petri net (HSPN). The HSPN optimizes grid resource sharing, by categorizing resource requests in three layers, where each layer has special functions for receiving subtasks from, and delivering data to, the layer above or below. We compare the HSPN performance with the Min-min and Max-min resource scheduling algorithms. Our results show that the HSPN performs better than Max-min, but slightly underperforms Min-min.

Energy Aware Scheduling of Aperiodic Real-Time Tasks on Multiprocessor Systems

  • Anne, Naveen;Muthukumar, Venkatesan
    • Journal of Computing Science and Engineering
    • /
    • 제7권1호
    • /
    • pp.30-43
    • /
    • 2013
  • Multicore and multiprocessor systems with dynamic voltage scaling architectures are being used as one of the solutions to satisfy the growing needs of high performance applications with low power constraints. An important aspect that has propelled this solution is effective task/application scheduling and mapping algorithms for multiprocessor systems. This work proposes an energy aware, offline, probability-based unified scheduling and mapping algorithm for multiprocessor systems, to minimize the number of processors used, maximize the utilization of the processors, and optimize the energy consumption of the multiprocessor system. The proposed algorithm is implemented, simulated and evaluated with synthetic task graphs, and compared with classical scheduling algorithms for the number of processors required, utilization of processors, and energy consumed by the processors for execution of the application task graphs.

자원제약하의 동적 다중 프로젝트 일정계획에 Tabu Search 적용 (A Tabu Search Approach for Resource Constrained Dynamic Multi-Projects Scheduling)

  • 윤종준;이화기
    • 산업경영시스템학회지
    • /
    • 제22권52호
    • /
    • pp.297-309
    • /
    • 1999
  • Resource Constrained Dynamic Multi-Projects Scheduling(RCDMPS) is intended to minimize the total processing time(makespan) of two or more projects sequentially arriving at the shop under restricted resources. The aim of this paper is to develop the new Tabu Search heuristic for RCDMPS to minimize makespan. We propose the insertion method to generate the neighborhood solutions in applying the Tabu Search for the RCDMPS and the diversification strategy to search the solution space diversely. The proposed diversification strategy apply the dynamic tabu list that the tabu list size is generated and renewed at each iteration by the complexity of the project, and change the proposed tabu attribute. In this paper, We use the dynamic tabu list for the diversification strategy and intensification strategy in the tabu search, and compare with other dispatching heuristic method to verify that the new heuristic method minimize the makespan of the problem.

  • PDF

A Dynamic Programming Approach for Emergency Vehicle Dispatching Problems

  • Choi, Jae Young;Kim, Heung-Kyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권9호
    • /
    • pp.91-100
    • /
    • 2016
  • In this research, emergency vehicle dispatching problems faced with in the wake of massive natural disasters are considered. Here, the emergency vehicle dispatching problems can be regarded as a single machine stochastic scheduling problems, where the processing times are independently and identically distributed random variables, are considered. The objective of minimizing the expected number of tardy jobs, with distinct job due dates that are independently and arbitrarily distributed random variables, is dealt with. For these problems, optimal static-list policies can be found by solving corresponding assignment problems. However, for the special cases where due dates are exponentially distributed random variables, using a proposed dynamic programming approach is found to be relatively faster than solving the corresponding assignment problems. This so-called Pivot Dynamic Programming approach exploits necessary optimality conditions derived for ordering the jobs partially.

비디오 서버에서의 효율적인 대역폭 스케줄링 지원 (Efficient Support for Adaptive Bandwidth Scheduling in Video Servers)

  • 이원준
    • 정보처리학회논문지C
    • /
    • 제9C권2호
    • /
    • pp.297-306
    • /
    • 2002
  • 멀티미디어 어플리케이션들은 기존의 화일 서버 기법으로는 쉽게 제공하지 못하는 보장된 검색 및 전송률을 요구한다. 본 논문에서는 CM(Continuous Media : 예를 들어 비디오) 서버를 위한 동적 협상 수락 제어(dynamic negotiated admission control)와 자원 스케줄링(resource scheduling) 기법을 제안한다. 이는 두 부분으로 구성되는데, 예약 기반 수락 제어 방법(reserve-baed admission control mechanism)과 동적으로 자원을 할당하는 스케줄러가 그것이다. 정적 스케줄러와 비교할 때, 제안된 기법은 경쟁하는 스트림들에게 이용가능 한 자원들을 효과적으로 공유할 수 있도록 해주며, 전반적인 QoS(Quality of Service)를 향상시키기 위해 자원의 재 할당을 요구하는 스트림들을 위한 스케줄러 초기화 협상(scheduler-initiated negotation)을 통해 높은 이용률을 얻을 수 있다. 본 논문에서 제안한 기법을 사용하여 동시에 실행시킬 수 있는 클라이언트의 수를 증가시킬 수 있으며 혼잡한 트래픽 상태에서도 좋은 응답 비율과 향상된 자원 이용률을 얻을 수 있다.

랑데부 윈도우와 스니프 모드를 이용한 트래픽 적응 동적 통합 스케줄링 (Traffic-Adaptive Dynamic Integrated Scheduling Using Rendezvous Window md Sniff Mode)

  • 박새롬;이태진
    • 한국통신학회논문지
    • /
    • 제28권8A호
    • /
    • pp.613-619
    • /
    • 2003
  • 블루투스는 무선으로 근거리 디바이스들을 연결하는 통신 기술로, 하나의 마스터와 하나 이상의 슬레이브 기기가 피코넷을 구성하고, 피코넷들이 연결되어 스캐터넷을 이루게 된다. 스캐터넷에서 여러 피코넷에 속하면서, 피코넷간 연결을 해주는 디바이스를 브릿지 또는 게이트웨이 노드라고 하는데 스캐터넷이 효율적으로 동작하도록 하기 위해서는 피코넷 내부의 마스터와 슬레이브 간의 효과적인 피코넷 스케줄링과 함께 브릿지 노드를 효과적으로 스케줄링 해주는 스캐터넷 스케줄링이 필요하다. 본 논문에서는 랑데부 포인트와 랑데부 윈도우를 이용한 스캐터넷 스케줄링 알고리즘과 함께 스니프 모드를 이용한 피코넷 스케줄링 알고리즘을 제안하고, 시뮬레이션을 통해 기존 방식과의 성능을 비교, 분석하였다. 그 결과 트래픽의 상태에 따라 링크에 할당되는 대역폭을 가변함으로써 무선자원을 효과적으로 분배할 수 있음을 보였다. 또한 제안된 알고리즘은 전력 소비 절약 모드인 스니프 모드의 사용으로 전력 소비를 절약할 수 있다는 장점을 갖는다.

조선소 병렬 기계 공정에서의 납기 지연 및 셋업 변경 최소화를 위한 강화학습 기반의 생산라인 투입순서 결정 (Reinforcement Learning for Minimizing Tardiness and Set-Up Change in Parallel Machine Scheduling Problems for Profile Shops in Shipyard)

  • 남소현;조영인;우종훈
    • 대한조선학회논문집
    • /
    • 제60권3호
    • /
    • pp.202-211
    • /
    • 2023
  • The profile shops in shipyards produce section steels required for block production of ships. Due to the limitations of shipyard's production capacity, a considerable amount of work is already outsourced. In addition, the need to improve the productivity of the profile shops is growing because the production volume is expected to increase due to the recent boom in the shipbuilding industry. In this study, a scheduling optimization was conducted for a parallel welding line of the profile process, with the aim of minimizing tardiness and the number of set-up changes as objective functions to achieve productivity improvements. In particular, this study applied a dynamic scheduling method to determine the job sequence considering variability of processing time. A Markov decision process model was proposed for the job sequence problem, considering the trade-off relationship between two objective functions. Deep reinforcement learning was also used to learn the optimal scheduling policy. The developed algorithm was evaluated by comparing its performance with priority rules (SSPT, ATCS, MDD, COVERT rule) in test scenarios constructed by the sampling data. As a result, the proposed scheduling algorithms outperformed than the priority rules in terms of set-up ratio, tardiness, and makespan.

객체에 근거한 선호도 제약 중심 스케줄링 언어와 성능향상 기법 (An object-based preference-driven scheduling language and techniques for improving its perforance)

  • 이기철;문정모;송성헌
    • 경영과학
    • /
    • 제12권2호
    • /
    • pp.43-62
    • /
    • 1995
  • For a complex scheduling system like time table construction, its optimal solution, if exists, is hard to obtain. In this paper, the scheduling environment is reasonably confined as where objects have their own events competing for better slots on boards, and objects have their own board slot preferences and belong to one or more classes of the society which globally constrains them. Here, two phase method is suggested, where the first phase is human-like preference driven and the second phase is for fine tuning by considering all the factors given. Designed and implemented in our system HI-SCHED are dynamic object switching, temporal-constraint-driven intelligent backtracking, case-based revisions, object-based approach, and so on. Some satisfaction degrees are also defined to measure the usefulness of our method. In addition, look-ahead dynamic object switching is considered, and additional global constraints are introduced and processed. A simple scheme is also used to verify the usefulness of the post processing scheme.

  • PDF