• 제목/요약/키워드: dynamic scanning

검색결과 357건 처리시간 0.028초

Tribological approach for the analysis of the pedestrain slipping accident II

  • Kim, Inju
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.662-666
    • /
    • 1996
  • The variations of the surface topographical parameters for the analysis of the pedestrian slip and fall accidents during the sliding friction between the specially prepared floor specimens and three working shoes were investigated. The profile ordinate data for each flooring specimen were obtained at 1.1 .mu.m intervals using a laser scanning confocal microscope system along to the direction of sliding. A number of surface roughness parameters, that is, the centre line average (c.l.a.) and root mean square (r.m.s.) roughness, maximum height (Rtm), maximum mean peak height (Rpm), maximum mean depth (Rvm), and average asperity slope were calculated using a computer program and compared with the dynamic friction results. The analysis showed that the surface parameters undergo marked variations during the sliding process, but the variations were statistically significant. It was found that amongst various surface parameters, the maximum depth (Rvm) and the average asperity slope of the asperities were the biggest variation during the sliding proceeding. This result confirms the previous study and may suggests a new approach to monitoring the flooring environments with their service as the effort to reduce the pedestrain slip accident.

  • PDF

가속노화시험장치를 적용한 틸팅열차용 유리섬유직물/페놀릭 복합재의 노화특성 평가 (Aging Characteristics of Glass Fabric/Phenolic Composites for Tilting Train Using Accelerated Aging Tester)

  • 윤성호;남정표;황영은;이상진;신광복
    • 한국철도학회논문집
    • /
    • 제8권2호
    • /
    • pp.188-194
    • /
    • 2005
  • Aging characteristics of glass fabric/phenolic composites for tilting train subjected to combined environmental aging factors were investigated. A 2.5KW accelerated aging tester with a xenon-arc lamp was used to provide environmental aging factors such as temperature, moisture, and ultraviolet. A series of aging tests were conducted up to 3000 hours and several types of specimens were prepared along the warp direction and the fill direction. Mechanical degradations for tensile, flexural, and shear properties were evaluated as a function of exposure times through a material testing system. Thermal analysis properties such as storage shear modulus, loss shear modulus, and tan 3 were measured through a dynamic mechanical analyzer. Finally exposed surfaces of the composites were examined using a scanning electron microscope. According to the experimental results, mechanical properties and thermal analysis properties of glass fabric/phenolic composites were found to be slightly degraded as a function of exposure times due to combined environmental effects.

EPDM계 열가소성 가황체의 형태학적 연구 (Morphology of EPDM-based Thermoplastic Vulcanizates)

  • 이상진;김영규;박성수;조원제;하창식
    • Elastomers and Composites
    • /
    • 제32권3호
    • /
    • pp.157-165
    • /
    • 1997
  • The morphology of the thermoplastic vulcanizates prepared from ethylene-propylene-diene terpolymer, polypropylene and high density polyethylene(HDPE) or ethylene based ionomer were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured in the presence of PP and HDPE or ionomer under shear with dicumyl peroxide(DCP). The effects of DCP concentration and rubber/plastics composition were studied. In the morphological analysis by scanning electron microscopy (SEM), a small amount of EPDM acted as a compatibilizer to HDPE and PP. It was also revealed that the dynamic vulcanization process could reduce the domain size of the crosslinked EPDM phase. When ionomer was added to EPDM/PP blend, the thermoplastic vulcanizate showed typical ductile fracture topology and the trend was more clearly observed when DCP contents and ionomer contents are higher.

  • PDF

Electrochemical Non-Enzymatic Glucose Sensor based on Hexagonal Boron Nitride with Metal-Organic Framework Composite

  • Ranganethan, Suresh;Lee, Sang-Mae;Lee, Jaewon;Chang, Seung-Cheol
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, an amperometric non-enzymatic glucose sensor was developed on the surface of a glassy carbon electrode by simply drop-casting the synthesized homogeneous suspension of hexagonal boron nitride (h-BN) nanosheets with a copper metal-organic framework (Cu-MOF) composite. Comprehensive analytical methods, including field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry, were used to investigate the surface and electrochemical characteristics of the h-BN-Cu-MOF composite. The FE-SEM, FT-IR, and XRD results showed that the h-BN-Cu-MOF composite was formed successfully and exhibited a good porous structure. The electrochemical results showed a sensor sensitivity of $18.1{\mu}A{\mu}M^{-1}cm^{-2}$ with a dynamic linearity range of $10-900{\mu}M$ glucose and a detection limit of $5.5{\mu}M$ glucose with a rapid turnaround time (less than 2 min). Additionally, the developed sensor exhibited satisfactory anti-interference ability against dopamine, ascorbic acid, uric acid, urea, and nitrate, and thus, can be applied to the design and development of non-enzymatic glucose sensors.

Ultrasonography and Ultrasound-guided Interventions of the Shoulder

  • Moon, Sang Ho;Ko, Kwang Pyo;Baek, Seung Il;Lee, Song
    • Clinics in Shoulder and Elbow
    • /
    • 제18권3호
    • /
    • pp.172-193
    • /
    • 2015
  • Nowadays shoulder ultrasound is commonly used in the assessment of shoulder diseases and is as accurate as magnetic resonance imaging in the detection of several pathologies. Operator dependence is the main disadvantage of shoulder ultrasound. After adhering to a strict examination protocol, good knowledge of normal anatomy and pathologic processes and an awareness of common pitfalls, it can be used as a focused examination providing rapid, real-time diagnosis, and treatment by ultrasound-guided interventions in desired clinical situations. Also shoulder ultrasound can help the surgeon decide whether treatment will be surgical or nonsurgical. If arthroscopy is planned, sonographic findings help to counsel patients regarding surgical and functional outcomes. If a nonsurgical approach is indicated, ultrasound can be used to follow patients. This review article presents the examination techniques, the normal sonographic appearances and the main pathologic conditions found in shoulder ultrasound. And also addresses a simplified approach to scanning and ultrasound-guided intervention. Knowledge of optimal techniques, normal anatomy, dynamic maneuvers, and pathologic conditions is essential for optimal performance and interpretation of images.

PVC(Polyvinyl Chloride) 하수도관의 맞대기 융착 용접에 대한 연구 (A study on the Butt-welding Characteristic of PVC and PE Pipe)

  • 안주선;남준영;이상윤;이보영
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.62-62
    • /
    • 2010
  • PVC(Polyvinyl Chloride)와 HDPE(High-density Polyethlene) 하수도관은 수많은 고분자 재료 중에도 높은 기계적 강도를 가지며, 광범위하게 사용되고 있다. 하지만, PVC와 HDPE 하수관을 연결하기 위해 소모 접착제나 고무링 이용한 소켓 방법 이음 방법은 낮은 수밀성과 기계적 강도로 오 폐수의 누수가 발생되고, 이것이 흙에 스며들어 지하수, 하천 및 토양을 오염시키고 있다. 따라서, 대안으로 최근에는 열판을 이용한 맞대기 융착 용접을 PE 하수도 관에 제한적으로 적용하여 시공하고 있다. 그러나, PVC 하수관은 열을 가할 시 열에 의한 민감한 거동으로 인해 맞대기 융착 용접법이 적용되지 못하고 있는 실정이다. 따라서 본 연구에서는 하수도 관 중, 국내에서 가장 많이 사용되고 있는 내 충격 PVC 하수도관과 HDPE 이중 벽관의 DSC(Diffential Scanning Calorimeter), TGA(Thermogravimetric analyzer), TMA(Thermomechanical Analysis), DMA(Dynamic Mechanical Analysis) 분석으로 온도에 따른 열적 거동을 분석하여, 적절한 융착 온도 조건을 제시하였다. 또한 접합강도 향상을 위한 이음부 설계를 제안하여, 융착 용접 특성을 평가하였다.

  • PDF

Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo

  • Choo, Yeon Woong;Jeong, Juhee;Jung, Keehoon
    • BMB Reports
    • /
    • 제53권7호
    • /
    • pp.357-366
    • /
    • 2020
  • Currently, most biological research relies on conventional experimental techniques that allow only static analyses at certain time points in vitro or ex vivo. However, if one could visualize cellular dynamics in living organisms, that would provide a unique opportunity to study key biological phenomena in vivo. Intravital microscopy (IVM) encompasses diverse optical systems for direct viewing of objects, including biological structures and individual cells in live animals. With the current development of devices and techniques, IVM addresses important questions in various fields of biological and biomedical sciences. In this mini-review, we provide a general introduction to IVM and examples of recent applications in the field of immunology, oncology, and vascular biology. We also introduce an advanced type of IVM, dubbed real-time IVM, equipped with video-rate resonant scanning. Since the realt-ime IVM can render cellular dynamics with high temporal resolution in vivo, it allows visualization and analysis of rapid biological processes.

Styrenic Polymer/Organoclay Nanocomposite Prepared via in-situ Polymerization with an Azoinitiator Linked to an Epoxy Oligomer

  • Jeong, Han-Mo;Choi, Mi-Yeon;Kim, Min-Seok;An, Jin-Hee;Jung, Jin-Su;Kim, Jae-Hoon;Kim, Byung-Kyu;Cho, Sung-Man
    • Macromolecular Research
    • /
    • 제14권6호
    • /
    • pp.610-616
    • /
    • 2006
  • An azoinitiator linked to an epoxy oligomer, which could easily diffuse into the organoclay gallery and swell it, was used as an initiator to enhance the delamination of an organoclay, Cloisite 25A, in a matrix of styrenic polymers, poly(styrene-co-acrylonitrile) and polystyrene, during the preparation of a nanocomposite via an in-situ polymerization method. X-ray diffraction results and transmission electron microscopic observation of the morphology showed that the epoxy segment enhanced not only the delamination but also the extrication of ammonium cations from the organoclay gallery into the polymer matrix. The latter phenomenon induced the structural change of the alkyl group of ammonium cations in the gallery from a bilayer to monolayer structure, and also decreased the glass-rubber transition temperature as measured by a differential scanning calorimeter and dynamic mechanical analyzer.

방사선 열화에 따른 Polychloroprene의 산화특성 (Oxidation Properties of Polychloroprene by Irradiation Degradation)

  • 김기엽;강현구;류부형;이청;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.456-459
    • /
    • 2003
  • Polychloroprene(CR) is well known as elastomer commonly utilized in the electrical. It is mainly used for cable jacket and insulator. The irradiation degradation property of polymer materials is very important to prevent unexpected accidents in the Nuclear Power Plant(NPP). The irradiation degradation is caused by the oxidation of polymer materials, and this oxidation is occurred by oxygen radical produced from air. In this study, we evaluate the oxidation properties of CR. CR is irradiated for 200, 400, 600, 1000 kGy radiation dose. The oxidation properties of irradiated CR are investigated by differential scanning calorimetry, dynamic mechanical properties and FT-IR/ATR. Glass transition temperature(Tg), decomposition onset temperature(DOT), loss modulus and mechanical tan $\delta$ values are compared together. The irradiation limit of CR in the NPP, is known for 500 kGy, and this is exactly matched with investigated results.

  • PDF

탄성 힌지 타입 레버 메커니즘을 이용한 자동 초점 조절 미세구동장치에 대한 연구 (A study on fine actuating stage for autofocus by using flexure-hinge type lever mechanism)

  • 이재석;홍석인;김호상;장한기;이경돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.665-666
    • /
    • 2006
  • In precision laser microfabrication, focusing is essential to acquire good machining precision and uniform machining quality. If it does not perform, laser machining cannot be realized. So, confocal scanning method with high depth resolution is used for focus detection technique. This paper is concerned with a procedure for design, analysis and performance test of an autofocus fine actuating stage, which is composed of flexure-hinge type lever mechanism and piezoelectric actuator. Through series of analytical design, the stage is simplified as a rigid bodies(lever and main body) and springs(flexure hinges). The simplified model was applied to determine the dimension of flexure hinges and lever. After structural analysis confirmed design requirement, an actual stage was made and verified through an experiment on the static and dynamic characteristics(maximum stroke and 1st natural frequency). The fabricated stage was satisfied with the design requirement.

  • PDF