• Title/Summary/Keyword: dynamic routing

Search Result 492, Processing Time 0.028 seconds

Learning Automata Based Multipath Multicasting in Cognitive Radio Networks

  • Ali, Asad;Qadir, Junaid;Baig, Adeel
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.406-418
    • /
    • 2015
  • Cognitive radio networks (CRNs) have emerged as a promising solution to the problem of spectrum under utilization and artificial radio spectrum scarcity. The paradigm of dynamic spectrum access allows a secondary network comprising of secondary users (SUs) to coexist with a primary network comprising of licensed primary users (PUs) subject to the condition that SUs do not cause any interference to the primary network. Since it is necessary for SUs to avoid any interference to the primary network, PU activity precludes attempts of SUs to access the licensed spectrum and forces frequent channel switching for SUs. This dynamic nature of CRNs, coupled with the possibility that an SU may not share a common channel with all its neighbors, makes the task of multicast routing especially challenging. In this work, we have proposed a novel multipath on-demand multicast routing protocol for CRNs. The approach of multipath routing, although commonly used in unicast routing, has not been explored for multicasting earlier. Motivated by the fact that CRNs have highly dynamic conditions, whose parameters are often unknown, the multicast routing problem is modeled in the reinforcement learning based framework of learning automata. Simulation results demonstrate that the approach of multipath multicasting is feasible, with our proposed protocol showing a superior performance to a baseline state-of-the-art CRN multicasting protocol.

Partially Distributed Dynamic Model for Secure and Reliable Routing in Mobile Ad hoc Networks

  • Anand, Anjali;Aggarwal, Himanshu;Rani, Rinkle
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.938-947
    • /
    • 2016
  • A mobile ad hoc network (MANET) is a collection of mobile nodes communicating in an infrastructure-less environment without the aid of a central administrating authority. Such networks entail greater dependency on synergy amongst the nodes to execute fundamental network operations. The scarcity of resources makes it economically logical for nodes to misbehave to preserve their resources which makes secure routing difficult to achieve. To ensure secure routing a mechanism is required to discourage misbehavior and maintain the synergy in the network. The proposed scheme employs a partially distributed dynamic model at each node for enhancing the security of the network. Supplementary information regarding misbehavior in the network is partially distributed among the nodes during route establishment which is used as a cautionary measure to ensure secure routing. The proposed scheme contemplates the real world scenario where a node may exhibit different kinds of misbehavior at different times. Thus, it provides a dynamic decision making procedure to deal with nodes exhibiting varying misbehaviors in accordance to their severity. Simulations conducted to evaluate the performance of the model demonstrate its effectiveness in dealing with misbehaving nodes.

A Study on Ad-Hoc Routing Protocol using Table-Driven DSR (테이블 구동 DSR을 이용한 에드혹 라우팅 프로토콜에 관한 연구)

  • 유기홍;하재승
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1209-1218
    • /
    • 2001
  • In this dissertation, we propose a dynamic source routing protocol supporting asymmetric path for mobile ad hoc networks. At present, the existing dynamic source routing protocol supports only symmetric path for routing. However, in fact, there can exist unidirectional links due to asymmetric property of mobile termenals or current wireless environment. Thus, we implement a mobile ad hoc routing protocol supporting asymmetric routing path, which is fit for more general wireless environment. Especially, the proposed protocol uses an improved multipath maintenance method in order to perform rapid route reconfiguration when route error due to mobility is detected.

  • PDF

Dueling DQN-based Routing for Dynamic LEO Satellite Networks (동적 저궤도 위성 네트워크를 위한 Dueling DQN 기반 라우팅 기법)

  • Dohyung Kim;Sanghyeon Lee;Heoncheol Lee;Dongshik Won
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.173-183
    • /
    • 2023
  • This paper deals with a routing algorithm which can find the best communication route to a desired point considering disconnected links in the LEO (low earth orbit) satellite networks. If the LEO satellite networks are dynamic, the number and distribution of the disconnected links are varying, which makes the routing problem challenging. To solve the problem, in this paper, we propose a routing method based on Dueling DQN which is one of the reinforcement learning algorithms. The proposed method was successfully conducted and verified by showing improved performance by reducing convergence times and converging more stably compared to other existing reinforcement learning-based routing algorithms.

Hop-by-Hop Dynamic Addressing Based Routing Protocol for Monitoring of long range Underwater Pipeline

  • Abbas, Muhammad Zahid;Bakar, Kamalrulnizam Abu;Ayaz, Muhammad;Mohamed, Mohammad Hafiz;Tariq, Moeenuddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.731-763
    • /
    • 2017
  • In Underwater Linear Sensor Networks (UW-LSN) routing process, nodes without proper address make it difficult to determine relative sensor details specially the position of the node. In addition, it effects to determine the exact leakage position with minimized delay for long range underwater pipeline monitoring. Several studies have been made to overcome the mentioned issues. However, little attention has been given to minimize communication delay using dynamic addressing schemes. This paper presents the novel solution called Hop-by-Hop Dynamic Addressing based Routing Protocol for Pipeline Monitoring (H2-DARP-PM) to deal with nodes addressing and communication delay. H2-DARP-PM assigns a dynamic hop address to every participating node in an efficient manner. Dynamic addressing mechanism employed by H2-DARP-PM differentiates the heterogeneous types of sensor nodes thereby helping to control the traffic flows between the nodes. The proposed dynamic addressing mechanism provides support in the selection of an appropriate next hop neighbour. Simulation results and analytical model illustrate that H2-DARP-PM addressing support distribution of topology into different ranges of heterogeneous sensors and sinks to mitigate the higher delay issue. One of the distinguishing characteristics of H2-DARP-PM has the capability to operate with a fewer number of sensor nodes deployed for long-range underwater pipeline monitoring.

Routing and Collision Avoidance of Linear Motor based Transfer Systems using Online Dynamic Programming

  • Kim, Jeong-Tae;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.30 no.9
    • /
    • pp.773-777
    • /
    • 2006
  • Significant increase of container flows in the marine terminals requires more efficient port equipments such as logistic and transfer systems. This paper presents collision avoidance and routing approach based on dynamic programming (DP) algorithm for a linear motor based shuttle car which is considered as a new transfer system in the port terminals. Most of routing problems are focused on automatic guided vehicle (AGV) systems, but its solutions are hardly utilized for LM based shuttle cars since both are mechanically different. Our proposed DP is implemented for real-time searching of an optimal path for each shuttle car in the Agile port terminal located at California in USA.

Routing of Linear Motor based Shuttle Cars in the Agile Port Terminal with Constrained Dynamic Programming

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.278-281
    • /
    • 2008
  • Linear motor (LM) based shuttle cars will play an important role in the future transportation systems of marine terminals to cope with increasing container flows. These systems are known as agile port terminals because of their significant advantages. However, routing for multiple shuttle cars is still an open issue. We present a network model of a container yard and propose constrained dynamic programming (DP) for its routing strategy with collision avoidance. The algorithm is a modified version of typical DP which is used to find an optimal path for a single traveler. We evaluate the new algorithm through simulation results for three shuttle cars in a mesh-type container yard.

Dynamic Caching Routing Strategy for LEO Satellite Nodes Based on Gradient Boosting Regression Tree

  • Yang Yang;Shengbo Hu;Guiju Lu
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.131-147
    • /
    • 2024
  • A routing strategy based on traffic prediction and dynamic cache allocation for satellite nodes is proposed to address the issues of high propagation delay and overall delay of inter-satellite and satellite-to-ground links in low Earth orbit (LEO) satellite systems. The spatial and temporal correlations of satellite network traffic were analyzed, and the relevant traffic through the target satellite was extracted as raw input for traffic prediction. An improved gradient boosting regression tree algorithm was used for traffic prediction. Based on the traffic prediction results, a dynamic cache allocation routing strategy is proposed. The satellite nodes periodically monitor the traffic load on inter-satellite links (ISLs) and dynamically allocate cache resources for each ISL with neighboring nodes. Simulation results demonstrate that the proposed routing strategy effectively reduces packet loss rate and average end-to-end delay and improves the distribution of services across the entire network.

Hydraulic Flood Routing for Natural Channels (자연수로의 수리학적 홍수추적)

  • 박기호;조현경
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.113-122
    • /
    • 1995
  • A nonlinear wave routing model is suggested for the routing of floods in the natural open channel networks. For the optimization of parameter of the proposed routing model, parameter adjustment is executed through the proposed objective function. The model treats backwater effect form upstream and downstream ends. Solution of formulated model is made possible on computer by adopting a nonlinear finite-difference scheme for the numerical analysis based on a combination of Lax-Wendroff scheme and Burstein-Lapidus modification. Comparison of the results of the proposed model to those of actual hydrograph and dynamic wave routing model denotes that the proposed model is as accurate as actual runoff hydrograph and faster the computer time than the dynamic wave routing model.

  • PDF

Cluster-based AODV for ZigBee Wireless Measurement and Alarm Systems (ZigBee 무선계측/경보 시스템을 위한 클러스터 기반의 AODV)

  • Park, Jae-Won;Kim, Hong-Rok;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.920-926
    • /
    • 2007
  • Establishing a fixed path for the message delivery through a wireless network is impossible due to the mobility. Among the number of routing protocols that have been proposed for wireless ad-hoc networks, the AODV(Ad-hoc On-demand Distance Vector) algorithm is suitable in the case of highly dynamic topology changes, along with ZigBee Routing(ZBR), with the exception of route maintenance. Accordingly, this paper introduces a routing scheme focusing on the energy efficiency and route discovery time for wireless alarm systems using IEEE 802.15.4-based ZigBee. Essentially, the proposed routing algorithm utilizes a cluster structure and applies ZBR within a cluster and DSR (Dynamic Source Routing) between clusters. The proposed algorithm does not require a routing table for the cluster heads, as the inter-cluster routing is performed using DSR. The performance of the proposed algorithm is evaluated and compared with ZBR using an NS2 simulator. The results confirm that the proposed Cluster-based AODV (CAODV) algorithm is more efficient than ZBR in terms of the route discovery time and energy consumption.