• Title/Summary/Keyword: dynamic resource allocation

Search Result 171, Processing Time 0.023 seconds

Enhanced Dynamic Bandwidth Allocation Algorithm in Ethernet Passive Optical Networks

  • Park, Byung-Joo;Hwang, An-Kyu;Yoo, Jae-Hyoung
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.301-307
    • /
    • 2008
  • As broadband access is evolving from digital subscriber lines to optical access networks, Ethernet passive optical networks (EPONs) are considered a promising solution for next generation broadband access. The point-to-multipoint topology of EPONs requires a time-division multiple access MAC protocol for upstream transmission. In this paper, we propose a new enhanced dynamic bandwidth allocation algorithm with fairness called EFDBA for multiple services over EPONs. The proposed algorithm is composed of a fairness counter controller and a fairness system buffer in the optical line terminal. The EFDBA algorithm with fairness can provide increased capability and efficient resource allocation in an EPON system. In the proposed EFDBA algorithm, the optical line termination allocates bandwidth to the optical network units in proportion to the fairness weighting counter number associated with their class and queue length. The proposed algorithm provides efficient resource utilization by reducing the unused remaining bandwidth made by idle state optical network units.

  • PDF

Dynamic Routing and Spectrum Allocation with Traffic Differentiation to Reduce Fragmentation in Multifiber Elastic Optical Networks

  • ZOUNEME, Boris Stephane;ADEPO, Joel;DIEDIE, Herve Gokou;OUMTANAGA, Souleymane
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • In recent decades, the heterogeneous and dynamic behavior of Internet traffic has placed new demands on the adaptive resource allocation of the optical network infrastructure. However, the advent of multifiber elastic optical networks has led to a higher degree of spectrum fragmentation than conventional flexible grid networks due to the dynamic and random establishment and removal of optical connections. In this paper, we propose heuristic routing and dynamic slot allocation algorithms to minimize spectrum fragmentation and reduce the probability of blocking future connection requests by considering the power consumption in elastic multifiber elastic optical networks.

Selector Processor Allocation Algorithm for Reducing the Call Blocking Rate of Multimedia Service in WCDMA IMT-2000 Systems (비동기 IMT-2000 시스템에서 멀티미디어 서비스 호 차단율 개선을 위한 셀렉터 프로세서 자원할당 방안)

  • Han, Jung-Hee
    • IE interfaces
    • /
    • v.17 no.4
    • /
    • pp.466-471
    • /
    • 2004
  • In this paper, I develop a simple dynamic resource allocation algorithm that reduces the call blocking rate by improving the resource utilization of the WCDMA (Wideband Code Division Multiple Access) systems under multimedia service environment. Simulation results show that the proposed algorithm significantly reduces the blocking rate of high speed multimedia calls. The algorithm developed in this paper is currently working in the commercial WCDMA IMT-2000 system.

Dynamic Resource Allocation Scheme for Multiple Antenna OFDM-based Wireless Multicast Systems (다중안테나 OFDM 멀티캐스트 시스템을 위한 동적 자원할당 알고리즘)

  • Xu, Jian;Lee, Sang-Jin;Kang, Woo-Seok;Seo, Jong-Soo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.883-891
    • /
    • 2008
  • Multiple antenna orthogonal frequency division multiplexing (OFDM) is a promising technique for the high downlink-capacity in the next generation wireless systems, in which adaptive resource allocation is an important research issue that can significantly improve the performance with guaranteed QoS for users. However, most of the current resource allocation algorithms are limited to unicast system. In this paper, dynamic resource allocation is studied for multiple antenna OFDM based systems with multicast service. In the simulation, the performance of multicast system was compared with that of the unicast system. Numerical results also show that by using the proposed algorithms the system capacity is significantly improved compared with the conventional scheme.

Fairness-insured Aggressive Sub-channel Allocation and Efficient Power Allocation Algorithms to Optimize the Capacity of an IEEE 802.16e OFDMA/TDD Cellular System

  • Ko, Sang-Jun;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.385-398
    • /
    • 2009
  • This paper aims to find a suitable solution to joint allocation of sub-channel and transmit power for multiple users in an IEEE 802.16e OFDMA/TDD cellular system. We propose the FASA (Fairness insured Aggressive Sub-channel Allocation) algorithm, which is a dynamic channel allocation algorithm that considers all of the users' channel state information conditionally in order to maximize throughput while taking into account fairness. A dynamic power allocation algorithm, i.e., an improved CHC algorithm, is also proposed in combination with the FASA algorithm. It collects the extra downlink transmit power and re-allocates it to other potential users. Simulation results show that the joint allocation scheme with the improved CHC power allocation algorithm provides an additional increase of sector throughput while simultaneously enhancing fairness. Four frames of time delay for CQI feedback and scheduling are considered. Furthermore, by addressing the difference between uplink and downlink scheduling in an IEEE 802.16e OFDMA TDD system, we can employ the uplink channel information directly via channel sounding, resulting in more accurate uplink dynamic resource allocation.

A k-Tree-Based Resource (CU/PE) Allocation for Reconfigurable MSIMD/MIMD Multi-Dimensional Mesh-Connected Architectures

  • Srisawat, Jeeraporn;Surakampontorn, Wanlop;Atexandridis, Kikitas A.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.58-61
    • /
    • 2002
  • In this paper, we present a new generalized k-Tree-based (CU/PE) allocation model to perform dynamic resource (CU/PE) allocation/deallocation decision for the reconfigurable MSIMD/MIMD multi-dimensional (k-D) mesh-connected architectures. Those reconfigurable multi-SIMD/MIMD systems allow dynamic modes of executing tasks, which are SIMD and MIMD. The MIMD task requires only the free sub-system; however the SIMD task needs not only the free sub-system but also the corresponding free CU. In our new k-Tree-based (CU/PE) allocation model, we introduce two best-fit heuristics for the CU allocation decision: 1) the CU depth first search (CU-DFS) in O(kN$_{f}$ ) time and 2) the CU adjacent search (CU-AS) in O(k2$^{k}$ ) time. By the simulation study, the system performance of these two CU allocation strategies was also investigated. Our simulation results showed that the CU-AS and CU-DFS strategies performed the same system performance when applied for the reconfigurable MSIMD/MIMD 2-D and 3-D mesh-connected architectures.

  • PDF

Hierarchical Dynamic Bandwidth Allocation Algorithm for Multimedia Services over Ethernet PONs

  • Ahn, Kye-Hyun;Han, Kyeong-Eun;Kim, Young-Chon
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.321-331
    • /
    • 2004
  • In this paper, we propose a new dynamic bandwidth allocation (DBA) algorithm for multimedia services over Ethernet PONs (passive optical networks). The proposed algorithm is composed of a low-level scheduler in the optical network unit (ONU) and a high-level scheduler in the optical line terminal (OLT). The hierarchical DBA algorithm can provide expansibility and efficient resource allocation in an Ethernet PON system in which the packet scheduler is separated from the queues. In the proposed DBA algorithm, the OLT allocates bandwidth to the ONUs in proportion to the weight associated with their class and queue length, while the ONU preferentially allocates its bandwidth to queues with a static priority order. The proposed algorithm provides an efficient resource utilization by reducing the unused remaining bandwidth caused by the variable length of the packets. We also define the service classes and present control message formats conforming to the multi-point control protocol (MPCP) over an Ethernet PON. In order to evaluate the performance, we designed an Ethernet PON system on the basis of IEEE 802.3ah "Ethernet in the first mile" (EFM) using OPNET and carried out simulations. The results are analyzed in terms of the channel utilization, queuing delay, and ratio of the unused remaining bandwidth.

  • PDF

A Dynamic Bandwidth Allocation Scheme for a Multi-spot-beam Satellite System

  • Park, Unhee;Kim, Hee Wook;Oh, Dae Sub;Ku, Bon-Jun
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.613-616
    • /
    • 2012
  • A multi-spot-beam satellite is an attractive technique for future satellite communications since it can support high data rates by projecting high power density to each spot beam and can reuse a frequency in different cells to increase the total system capacity. In this letter, we propose a resource management technique adjusting the bandwidth of each beam to minimize the difference between the traffic demand and allocated capacity. This represents a reasonable solution for dynamic bandwidth allocation, considering a trade-off between the maximum total capacity and fairness among the spot beams with different traffic demands.

Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management of Cloud Systems

  • Mateo, Romeo Mark A.;Lee, Jae-Wan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2294-2314
    • /
    • 2011
  • The key issue in providing fast and reliable access on cloud services is the effective management of resources in a cloud system. However, the high variation in cloud service access rates affects the system performance considerably when there are no default routines to handle this type of occurrence. Adaptive techniques are used in resource management to support robust systems and maintain well-balanced loads within the servers. This paper presents an adaptive resource management for cloud systems which supports the integration of intelligent methods to promote quality of service (QoS) in provisioning of cloud services. A technique of dynamically assigning cloud services to a group of cloud servers is proposed for the adaptive resource management. Initially, cloud services are collected based on the excess cloud services load and then these are deployed to the assigned cloud servers. The assignment function uses the proposed proportional ordering which efficiently assigns cloud services based on its resource consumption. The difference in resource consumption rate in all nodes is analyzed periodically which decides the execution of service assignment. Performance evaluation showed that the proposed dynamic service assignment (DSA) performed best in throughput performance compared to other resource allocation algorithms.

Network function virtualization (NFV) resource allocation (RA) scheme and research trend (네트워크기능 가상화 (NFV) 자원할당 (RA) 방식과 연구동향)

  • Kim, Hyuncheol;Yoon, Seunghyun;Jeon, Hongseok;Lee, Wonhyuk
    • Convergence Security Journal
    • /
    • v.16 no.7
    • /
    • pp.159-165
    • /
    • 2016
  • Through the NFV (Network Function Virtualization), companies such as network service providers and carriers have sought to dramatically reduce CAPEX / OPEX by improving the speed of new service provisioning and flexibility of network construction through the S/W-based devices provided by NFV. One of the most important considerations for establishing an NFV network to provide dynamic services is to determine how to dynamically allocate resources (VNFs), the basic building blocks of network services, in the right place. In this paper, we analyzed the latest research trends on VNF node, link allocation, and scheduling in nodes that are required to provide arbitrary NS in NFV framework. In this paper, we also propose VNF scheduling problems that should be studied further in RA (Resource Allocation).