• 제목/요약/키워드: dynamic relaxation

검색결과 186건 처리시간 0.021초

Comparison of viscous and kinetic dynamic relaxation methods in form-finding of membrane structures

  • Labbafi, S. Fatemeh;Sarafrazi, S. Reza;Kang, Thomas H.K.
    • Advances in Computational Design
    • /
    • 제2권1호
    • /
    • pp.71-87
    • /
    • 2017
  • This study focuses on the efficiency and applicability of dynamic relaxation methods in form-finding of membrane structures. Membrane structures have large deformations that require complex nonlinear analysis. The first step of analysis of these structures is the form-finding process including a geometrically nonlinear analysis. Several numerical methods for form-finding have been introduced such as the dynamic relaxation, force density method, particle spring systems and the updated reference strategy. In the present study, dynamic relaxation method (DRM) is investigated. The dynamic relaxation method is an iterative process that is used for the static equilibrium analysis of geometrically nonlinear problems. Five different examples are used in this paper. To achieve the grading of the different dynamic relaxation methods in form-finding of membrane structures, a performance index is introduced. The results indicate that viscous damping methods show better performance than kinetic damping in finding the shapes of membrane structures.

동적이완법을 이용한 공간구조의 후좌굴 해석에 관한 연구 (A Study on the Post-Buckling analysis of spatial structures by using dynamic relaxation method)

  • 이경수;이상주;이형훈;한상을
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.154-160
    • /
    • 2005
  • The present study is concerned with the application of dynamic relaxation method in the investigation of the large deflection behavior of spatial structures. The dynamic relaxation do not require the computation or formulation of any tangent stiffness matrix. The convergence to the solution is achieved by using only vectorial quantities and no stiffness matrix is required in its overall assembled form. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of using dynamic relaxation methods, in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

A Comparative Study on the Dielectric and Dynamic Mechanical Relaxation Behavior of the Regenerated Silk Fibroin Films

  • Um, In-Chul;Kim, Tae-Hee;Kweon, Hae-Yong;Ki, Chang-Seok;Park, Young-Hwan
    • Macromolecular Research
    • /
    • 제17권10호
    • /
    • pp.785-790
    • /
    • 2009
  • In this paper, the relaxation behavior of the regenerated silk fibroin (SF) films was investigated using dielectric thermal analysis (DETA), and compared with the dynamic mechanical behavior obtained from dynamic mechanical thermal analysis (DMTA), in order to gain a better understanding of the characteristics of dielectric behavior of SF film and identify the differences between the two analyses. Compared to DMTA, DETA exhibited a higher sensitivity on the molecular relaxation behaviors at low temperature ranges that showed a high $\gamma$-relaxation peak intensity without noise. However, it was not effective to examine the relaxation behaviors at high temperatures such as $\alpha-$ and ${\alpha}_c$-relaxations that showed a shoulder peak shape. On the contrary, DMTA provided more information regarding the relaxation behaviors at high temperatures, by exhibiting the changes in width, intensity and temperature shift of the $\alpha$-relaxation peak according to various crystallinities. Conclusively, DETA and DMTA can be utilized in a complementary manner to study the relaxation behavior of SF over a wide temperature range, due to the different sensitivity of each technique at different temperatures.

Component dynamics in miscible polymer blends: A review of recent findings

  • Watanabe, Hiroshi;Urakawa, Osamu
    • Korea-Australia Rheology Journal
    • /
    • 제21권4호
    • /
    • pp.235-244
    • /
    • 2009
  • Miscible polymer blends still have heterogeneity in their component chain concentration in the segmental length scale because of the chain connectivity (that results in the self-concentration of the segments of respective chains) as well as the dynamic fluctuation over various length scales. As a result, the blend components feel different dynamic environments to exhibit different temperature dependence in their segmental relaxation rates. This type of dynamic heterogeneity often results in a broad glass transition (sometimes seen as two separate transitions), a broad distribution of the local (segmental) relaxation modes, and the thermo-rheological complexity of this distribution. Furthermore, the dynamic heterogeneity also affects the global dynamics in the miscible blends if the component chains therein have a large dynamic asymmetry. Thus, the superficially simple miscible blends exhibit interesting dynamic behavior. This article gives a brief summary of the features of the segmental and global dynamics in those blends.

Dynamic Heterogeneity in Spin Facilitated Model of Supercooled Liquid: Crossover from Fragile to Strong Liquid Behavior

  • Choi, Seo Woo;Kim, Soree;Jung, YounJoon
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.183-195
    • /
    • 2014
  • Kinetically constrained models (KCM) have attracted interest as models that assign dynamic origins to the interesting dynamic properties of supercooled liquid. Signs of dynamic heterogeneity in the crossover model that linearly interpolates between the FA-like symmetric constraint and the East model constraint by asymmetric parameter b were investigated using Monte Carlo technique. When the asymmetry parameter was decreased sufficiently, smooth fragile-to-strong dynamic transition was observed in terms of the relaxation time, diffusion constant, Stokes-Einstein violation, and dynamic length scale. Competition between energetically favored symmetric relaxation mechanism and entropically favored asymmetric relaxation mechanism is behind such transition.

  • PDF

동적이완법을 이용한 후좌굴 해석법의 Hybrid 구조물의 적용성 평가 (A Study on the Post-Buckling Analysis of Spatial Structures Using Dynamic Relaxation Method)

  • 이경수;이상주;한상을
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.58-65
    • /
    • 2006
  • 대공간 구조 시스템의 대변형 거동 산정법으로 최근 동적이완법의 적용에 대한 연구가 진행되고 있다. 동적이완법에서는 접선 강성 매트릭스의 수식 계산이 필요하지 않고, 단지 벡터량을 이용함으로써 해로 수렴하며, 전체 계산 과정에서 강성 매트릭스는 필요하지 않다. 동적이완법의 이점을 평가하기 위해 많은 대공간 구조 시스템에 대해 적용하였고, 이는 대공간 구조 시스템의 후좌굴 거동을 추적하는데 있어서 동적이완법 사용의 타당성을 규명할 수 있다.

  • PDF

Nonlinear dynamic analysis by Dynamic Relaxation method

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • 제28권5호
    • /
    • pp.549-570
    • /
    • 2008
  • Numerical integration is an efficient approach for nonlinear dynamic analysis. In this paper, general category of the implicit integration errors will be discussed. In order to decrease the errors, Dynamic Relaxation method with modified time step (MFT) will be used. This procedure leads to an alternative algorithm which is very general and can be utilized with any implicit integration scheme. For numerical verification of the proposed technique, some single and multi degrees of freedom nonlinear dynamic systems will be analyzed. Moreover, results are compared with both exact and other available solutions. Suitable accuracy, high efficiency, simplicity, vector operations and automatic procedures are the main merits of the new algorithm in solving nonlinear dynamic problems.

The dynamic relaxation method using new formulation for fictitious mass and damping

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • 제34권1호
    • /
    • pp.109-133
    • /
    • 2010
  • This paper addresses the modified Dynamic Relaxation algorithm, called mdDR by minimizing displacement error between two successive iterations. In the mdDR method, new relationships for fictitious mass and damping are presented. The results obtained from linear and nonlinear structural analysis, either by finite element or finite difference techniques; demonstrate the potential ability of the proposed scheme compared to the conventional DR algorithm. It is shown that the mdDR improves the convergence rate of Dynamic Relaxation method without any additional calculations, so that, the cost and computational time are decreased. Simplicity, high efficiency and automatic operations are the main merits of the proposed technique.

Segmental Motions and Associated Dynamic Mechanical Thermal Properties of a Series of Copolymers Based on Poly(hexamethylene terephthalate) and Poly(1,4-cyclohexylenedimethylene terephthalate)

  • Jeong Young-Gyu;Lee Sang-Cheol;Jo Won-Ho
    • Macromolecular Research
    • /
    • 제14권4호
    • /
    • pp.416-423
    • /
    • 2006
  • The dynamic mechanical thermal properties of poly(hexamethylene terephthalate) (PHT), poly(1,4-cyclohexylenedimethylene terephthalate) (PCT) and their P(HT-co-CT) random copolymers in the amorphous state were examined as a function of temperature and frequency. All the samples exhibited two main relaxation processes in the plot of tan ${\delta}$ versus temperature: the primary ${\alpha}$-relaxation associated with the glass transition and the secondary ${\beta}$-relaxation attributed to the local segmental motions of mostly cyclohexylene rings for PCT and to cooperative motions of methylene, carboxyl, and phenylene groups for PHT. Both ${\alpha}$- and ${\beta}$-relaxation temperatures increased with increasing CT content. The activation energy of the ${\alpha}$-relaxation increased with increasing CT content, whereas that of the ${\beta}$-relaxation decreased. The sub-glassy secondary ${\beta}$-relaxation processes of PCT and PHT were investigated in terms of the cooperativity of main-chain segmental motions.

Kernel Relaxation과 동적 모멘트를 조합한 Support Vector Machine의 학습 성능 향상 (Improving Learning Performance of Support Vector Machine using the Kernel Relaxation and the Dynamic Momentum)

  • 김은미;이배호
    • 정보처리학회논문지B
    • /
    • 제9B권6호
    • /
    • pp.735-744
    • /
    • 2002
  • 본 논문에서는 커널완화법과 동적모멘트를 이용한 support vector machines의 학습성능 개선을 제안하였다. 제안된 학습 방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습 속성을 반영하는 동적모멘트 방법이다. 기존의 정적 상수로 정의된 모멘트가 전체 학습에 동등하게 영향을 주는 반면 제안된 동적모멘트를 이용한 학습방법은 학습 수행에 따라 동적으로 모멘트를 변경함으로써 수렴속도와 학습 성능을 효과적으로 제어할 수 있다. 제안된 학습법을 support vector machine의 새로운 순차 학습 방법인 커널완화법에 적용하였다. 신경망 분류기 표준 평가 데이터인 SONAR 데이터를 이용하여 실험한 곁과 동적모멘트를 이용한 방법이 수렴속도와 학습 성능면에서 기존의 커널완화법과 정적모멘트를 이용한 학습법에 비해 향상된 성능을 보이는 것을 확인하였다.