A Comparative Study on the Dielectric and Dynamic Mechanical Relaxation Behavior of the Regenerated Silk Fibroin Films

  • Um, In-Chul (Department of Natural Fiber Science, Kyungpook National University) ;
  • Kim, Tae-Hee (Department of Bioengineering, University of Washington) ;
  • Kweon, Hae-Yong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Ki, Chang-Seok (Department of Biosystems and Biomaterials Sciences and Engineering, Seoul National University) ;
  • Park, Young-Hwan (Department of Biosystems and Biomaterials Sciences and Engineering, Seoul National University)
  • 발행 : 2009.10.25

초록

In this paper, the relaxation behavior of the regenerated silk fibroin (SF) films was investigated using dielectric thermal analysis (DETA), and compared with the dynamic mechanical behavior obtained from dynamic mechanical thermal analysis (DMTA), in order to gain a better understanding of the characteristics of dielectric behavior of SF film and identify the differences between the two analyses. Compared to DMTA, DETA exhibited a higher sensitivity on the molecular relaxation behaviors at low temperature ranges that showed a high $\gamma$-relaxation peak intensity without noise. However, it was not effective to examine the relaxation behaviors at high temperatures such as $\alpha-$ and ${\alpha}_c$-relaxations that showed a shoulder peak shape. On the contrary, DMTA provided more information regarding the relaxation behaviors at high temperatures, by exhibiting the changes in width, intensity and temperature shift of the $\alpha$-relaxation peak according to various crystallinities. Conclusively, DETA and DMTA can be utilized in a complementary manner to study the relaxation behavior of SF over a wide temperature range, due to the different sensitivity of each technique at different temperatures.

키워드

참고문헌

  1. N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai, J. Biomed. Mater. Res., 29, 1215 (1995) https://doi.org/10.1002/jbm.820291008
  2. H. Sakabe, H. Ito, T. Miyamoto, Y. Noishiki, and W. S. Ha, Sen-i Gakkaishi, 45, 487 (1989) https://doi.org/10.2115/fiber.45.11_487
  3. Y. Zhang, Biotechnology Advances, 5-6, 961 (1998)
  4. P. Chen, H. S. Kim, C. Park, H. Kim, I. Chin, and H. Jin, Macromol. Res., 16, 539 (2008) https://doi.org/10.1007/BF03218556
  5. P. Monti, G. Freddi, S. Sampaio, and M. Tsukada, J. Mol. Struct., 744-747, 685 (2005) https://doi.org/10.1016/j.molstruc.2004.10.083
  6. L. Jeong, K. Y. Lee, J. W. Liu, and W. H. Park, Int. J. Biol. Macromol., 38, 140 (2006) https://doi.org/10.1016/j.ijbiomac.2006.02.009
  7. K. Nakayama, in Polymer Characterization Techniques and Their Application to Blends, G. P. Simon, Ed., Oxford University Press, New York, 2003, pp 68-95
  8. J. Magoshi and Y. Magoshi, J. Polym. Sci., Polym. Phys. Ed., 13, 1347 (1975) https://doi.org/10.1002/pol.1975.170130607
  9. I. C. Um, H. Y. Kweon, Y. H. Park, and S. Hudson, Int. J. Biol. Macromol., 29, 91 (2001) https://doi.org/10.1016/S0141-8130(01)00159-3
  10. H. Y. Kweon and H. Y. Park, Polymer, 41, 7361 (2000) https://doi.org/10.1016/S0032-3861(00)00100-2
  11. A. Motta, L. Fambri, and C. Migliaresi, Macromol. Chem. Phys., 203, 1658 (2002) https://doi.org/10.1002/1521-3935(200207)203:10/11<1658::AID-MACP1658>3.0.CO;2-3
  12. G. Yang, L. X. Cao, and Y. Liu, J. Membr. Sci., 210, 379 (2002) https://doi.org/10.1016/S0376-7388(02)00419-2
  13. I. C. Um and Y. H. Park, Fibers and Polymers, 8, 579 (2007) https://doi.org/10.1007/BF02875993
  14. T. J. Laaksonen and Y. H. Roos, J. Cereal Sci., 32, 281 (2000) https://doi.org/10.1006/jcrs.2000.0338
  15. A. R. Tripathy, W. Chen, S. N. Kukureka, and W. J. MacKnight, Polymer, 44, 1835 (2003) https://doi.org/10.1016/S0032-3861(03)00029-6
  16. R. P. Chartoff, in Thermal Characterization of Polymeric Materials, E. A. Turi, Ed., Academic Press, San Diego, 1997, pp 484-743
  17. J. Magoshi, M. Mizuide, Y. Magoshi, K. Takahashi, M. Kubo, and S. Nakamura, J. Polym. Sci. B: Polym. Phys., 17, 515 (1979) https://doi.org/10.1002/pol.1979.180170315
  18. J. F. Rabek, Experimental Methods in Polymer Chemistry, John Wiley & Sons, New York, 1980, pp 507-508