• 제목/요약/키워드: dynamic recurrent neural network

검색결과 82건 처리시간 0.02초

Fault Diagnosis in Semiconductor Etch Equipment Using Bayesian Networks

  • Nawaz, Javeria Muhammad;Arshad, Muhammad Zeeshan;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권2호
    • /
    • pp.252-261
    • /
    • 2014
  • A Bayesian network (BN) based fault diagnosis framework for semiconductor etching equipment is presented. Suggested framework contains data preprocessing, data synchronization, time series modeling, and BN inference, and the established BNs show the cause and effect relationship in the equipment module level. Statistically significant state variable identification (SVID) data of etch equipment are preselected using principal component analysis (PCA) and derivative dynamic time warping (DDTW) is employed for data synchronization. Elman's recurrent neural networks (ERNNs) for individual SVID parameters are constructed, and the predicted errors of ERNNs are then used for assigning prior conditional probability in BN inference of the fault diagnosis. For the demonstration of the proposed methodology, 300 mm etch equipment model is reconstructed in subsystem levels, and several fault diagnosis scenarios are considered. BNs for the equipment fault diagnosis consists of three layers of nodes, such as root cause (RC), module (M), and data parameter (DP), and the constructed BN illustrates how the observed fault is related with possible root causes. Four out of five different types of fault scenarios are successfully diagnosed with the proposed inference methodology.

음향적 요소분석과 DRNN을 이용한 음성신호의 감성 인식 (Analyzing the Acoustic Elements and Emotion Recognition from Speech Signal Based on DRNN)

  • 심귀보;박창현;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.45-50
    • /
    • 2003
  • 최근 인간형 로봇에 대한 개발이 괄목할 만한 성장을 이루고 있고, 친근한 로봇의 개발에 중요한 역할을 담당하는 것으로써 감성/감정의 인식이 필수적이라는 인식이 확산되고 있나. 본 논문은 음성의 감정인식에 있어 가장 큰 부분을 차지하는 피치의 패턴을 인식하여 감정을 분류/인식하는 시뮬레이터의 개발과 시뮬레이션 결과를 나타낸다. 또한, 피치뿐 아니라 음향학적으로 날카로움, 낮음 등의 요소를 분류의 기준으로 포함시켜서 좀더 신뢰성 있는 인식을 할 수 있음을 보인다. 주파수와 음성의 다양한 분석을 통하여, 음향적 요소와 감성의 상관관계에 대한 분석이 선행되어야 하므로, 본 논문은 사람들의 음성을 녹취하여 분석하였다 시뮬레이터의 내부 구조로는 음성으로부터 피치를 추출하는 부분과 피치의 패턴을 학습시키는 DRNN 부분으로 이루어져 있다.