• Title/Summary/Keyword: dynamic ratio

Search Result 2,764, Processing Time 0.045 seconds

Nonlinear dynamic properties of dynamic shear modulus ratio and damping ratio of clay in the starting area of Xiong'an New Area

  • Song Dongsong;Liu Hongshuai
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.97-115
    • /
    • 2024
  • In this paper, a database consisting of the dynamic shear modulus ratio and damping ratio test data of clay obtained from 406 groups of triaxial tests is constructed with the starting area of Xiong'an New Area as the research background. The aim is to study the nonlinear dynamic properties of clay in this area under cyclic loading. The study found that the effective confining pressure and plasticity index have certain influences on the dynamic shear modulus ratio and damping ratio of clay in this area. Through data analysis, it was found that there was a certain correlation between effective confining pressure and plasticity index and dynamic shear modulus ratio and damping ratio, with fitting degree values greater than 0.1263 for both. However, other physical indices such as the void ratio, natural density, water content and specific gravity have only a small effect on the dynamic shear modulus ratio and the damping ratio, with fitting degree values of less than 0.1 for all of them. This indicates that it is important to consider the influence of effective confining pressure and plasticity index when studying the nonlinear dynamic properties of clays in this area. Based on the above, prediction models for the dynamic shear modulus ratio and damping ratio in this area were constructed separately. The results showed that the model that considered the combined effect of effective confining pressure and plasticity index performed best. The predicted dynamic shear modulus ratio and damping ratio closely matched the actual curves, with approximately 88% of the data falling within ±1.3 times the measured dynamic shear modulus ratio and approximately 85.1% of the data falling within ±1.3 times the measured damping ratio. In contrast, the prediction models that considered only a single influence deviated from the actual values, particularly the model that considered only the plasticity index, which predicted the dynamic shear modulus ratio and the damping ratio within a small distribution range close to the average of the test values. When compared with existing prediction models, it was found that the predicted dynamic shear modulus ratio in this paper was slightly higher, which was due to the overall hardness of the clay in this area, leading to a slightly higher determination of the dynamic shear modulus ratio by the prediction model. Finally, for the dynamic shear modulus ratio and damping ratio of the engineering site in the starting area of Xiong'an New Area, we confirm that the prediction formulas established in this paper have high reliability and provide the applicable range of the prediction model.

A Study on Optimal Multi-dynamic Absorber of Damped Linear Vibration System under the Harmonic Motion of the Base (기반의 조화운동을 받는 감쇠선형진동계의 최적 복합동흡진기에 관한 연구)

  • 안찬우;김동영;홍도관
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.325-330
    • /
    • 2000
  • A dynamic absorber is used to protect the primary vibration system under the steady-state harmonic disturbance. In a number of cases it appears expedient to install several absorbers of smaller masses instead of one. This may be due to the need of distribute the absorber's response along the construction, restrictions on the absorber's installation. So, we studied characteristics of the primary vibration system for the optimal natural frequency ratio and the optimal damping ratio of serial multi-dynamic absorber. Also we obtained the optimum values of the serial multi-dynamic absorber parameters using computer simulation for the damped primary vibration system. In designing multi-dynamic absorber, we presented for the optimal natural frequency and the optimal damping ratio of multi-dynamic absorbers.

  • PDF

A Study on the Effects of Dual Dynamic Vibration Absorber for Damped Vibration System (감쇠진동계에 부착된 복합동흡진기의 효과에 관한 연구)

  • 안찬우;최석창;김동영
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1039-1048
    • /
    • 1997
  • This paper describes the effects of dual dynamic vibration absorbers attached to a primary vibration system with damping. The efficiency of dual dynamic vibration absorbers was investigated with the height of amplitude ratio at the resonance frequency ratio of the damped vibration system according to mass ratio, natural frequency ratio and damping ratio. The variation of amplitude ratio related to frequency ratio of primary vibration system is verified experimentally and theoretically according to dual dynamic vibration systems using computer program designed to find mutual relationship between two absorbers.

  • PDF

Effects of damping ratio on dynamic increase factor in progressive collapse

  • Mashhadi, Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.677-690
    • /
    • 2016
  • In this paper, the effect of damping ratio on nonlinear dynamic analysis response and dynamic increase factor (DIF) in nonlinear static analysis of structures against column removal are investigated and a modified empirical DIF is presented. To this end, series of low and mid-rise moment frame structures with different span lengths and number of storeys are designed and the effect of damping ratio in DIF is investigated, performing several nonlinear static and dynamic analyses. For each damping ratio, a nonlinear dynamic analysis and a step by step nonlinear static analysis are carried out and the modified empirical DIF formulas are derived. The results of the analysis reveal that DIF is decreased with increasing damping ratio. Finally, an empirical formula is recommended that relates to damping ratio. Therefore, the new modified DIF can be used with nonlinear static analysis instead of nonlinear dynamic analysis to assess the progressive collapse potential of moment frame buildings with different damping ratios.

Dynamic Vibration Absorber Having Coil Springs and Oil Damper for a Damped Vibration System (감쇠진동계에 부착된 코일스프링과 오일댐퍼로 구성된 동흡진기)

  • Ahn, C.W.;Park, S.C.;Lee, H.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.129-135
    • /
    • 1996
  • This paper presents the effectiveness of the dynamic vibration absorber consisting of a single mass, coil springs and oil damper on the resonance freauency ratio and amplitude ratio for damped linear systems, that is, primary vibration system with damping. The effects of the dynamic vibration absorber are investigated numerically and experimentally for values of mass ratio, natural frequency ratio, and damping ratio. The experimental results show good agreement with calculated ones. As a result, the characteristics shown by the present work are useful in optimal tuning the dynamic vibration absorber in practice.

  • PDF

Dynamic Earth Pressure on Embedded Structure

  • Sadiq, Shamsher;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.9
    • /
    • pp.13-19
    • /
    • 2019
  • Dynamic earth pressure is considered an important parameter in the design of embedded structures. In current engineering design simplified methods developed either for yielding or non-yielding structures are utilized to predict resultant dynamic pressure. The applicability of these equations to embedded structures have not yet been reported. In this study we perform a suite of equivalent linear time history analysis for a range of embedded structure configurations. Numerically calculated dynamic pressure is shown to depend on the flexibility ratio (F), aspect ratio (L/H) of the embedded structure, and ground motion. Increase in L/H and intensity increases the magnitude of dynamic pressure. An increase in F decreases the dynamic pressure. Overall, the trends highlight the need for development of new method that accounts for F and L/H to calculate the dynamic pressure for the performance-based design of embedded structures.

Experimental research on dynamic characteristics of frozen clay considering seasonal variation

  • Xuyang Bian;Guoxin Wang;Yuandong Li
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.391-406
    • /
    • 2024
  • In order to study the soil seasonal dynamic characteristics in the regions with four distinct seasons, the soil dynamic triaxial experiments were conducted by considering the environmental temperature range from -30℃ to 30℃. The results demonstrate that the dynamic soil properties in four seasons can change greatly. Firstly, the dynamic triaxial experiments were performed to obtain the dynamic stress-strain curve, elastic modulus, and damping ratio of soil, under different confining pressures and temperatures. Then, the experiments also obtain the dynamic cohesion and internal friction angle of the clay under the initial strain, and the changing rule was summarized. Finally, the results show that the dynamic elastic modulus and dynamic cohesion will increase significantly when the clay is frozen; as the temperature continues to decrease, this increasing trend will gradually slow down, and the dynamic damping ratio will go down when the freezing temperature decreases. In this paper, the change mechanism is objectively analyzed, which verifies the reliability of the conclusions obtained from the experiment.

Effects of parameters of a linear dynamic vibration absorber on the vibrational characteristics of damped vibrational systems (선형동흡진기의 매개변수가 감쇠진동계의 진동특성에 미치는 영향)

  • Yoon, Jang-Sang;Lee, Yang-U;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.136-144
    • /
    • 1989
  • This paper presents the vibrational characteristics of linear damped vibrational systems with a linear dynamic absorber. The amplitude ratios of main vibrational system are derived from the equation of motion for the system, and optimal natural frequency ratio and damping ratio of dynamic absorber are obtained by computer simu- lation, which minimize the amplitude ratio of main vibrational system for the whole range of the frequency ratio. And, the effects of the parameters on the amplitude ratios are investigated. As the results, the effect of the natural frequency ratio on the amplitude ratio of main vibrational system is more important than that of the damping ratio of dynamic absorber as damping ratio of main vibrational system becomes larger. For the case of large damping ration of main vibrational system becomes larger. For the case of large damping ratio of main vibration system, the amplitude ratios are not decreased dramationally in spite of inoreasing mass ratio.

  • PDF

Effect of Interphase Condition and Fiber Content on the Dynamic Properties of Short-fiber Reinforced Chloroprene Rubber (계면상 조건과 단섬유 함유량이 단섬유 강화CR의 동적특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1151-1156
    • /
    • 2003
  • The dynamic properties of short-fiber reinforced Chloroprene rubber for vibration isolators have been studied as functions of interphase conditions and fiber content. The loss factor showed the maximum at strain amplitude 2%, and increased 0.09 for matrix, 0.05 for reinforced rubber with increasing frequency respectively. The dynamic ratio rapidly decreased with increasing strain amplitude, and some increased with increasing frequency. The better interphase condition showed the lower dynamic ratio. Therefore, the short-fiber reinforced rubber could have the better isolation in frequency ratio(${\sqrt{2}}min$.) compared to frequency ratio(${\sqrt{2}}max$.). And we have investigate the possibility of applying short-fiber reinforced rubber to automotive engine mount.

  • PDF

The Real Time Measurement of Dynamic Radius and Slip Ratio at the Vehicle (차량에서 실시간 동반경 및 슬립율 측정)

  • Lee, Dong-Kyu;Park, Jin-Il;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.89-94
    • /
    • 2006
  • The tire delivering power generated from engine to the ground pulls a vehicle to move. Radius of tires is changeable due to elasticity that depends on the speed of vehicle and traction force. The main objectives on this study are real time measurement of dynamic radius and slip ratio according to the speed and traction force. The dynamic radius is proportional to speed and traction force. According to measurement, the dynamic radius is increased about 3mm under 100km/h compared to stop. It is also increased about 1.5mm when a traction force is supplied as much as 4kN compared to no load state at low speed. There is no strong relationship between slip ratio and vehicle speed. The slip ratio is measured up to 4% under WOT at first stage gear. Through this research, the method of measuring dynamic radius and slip ratio is set up and is expected to be applied to the measurement of traction force in chassis dynamometer or accelerating and climbing ability.