• Title/Summary/Keyword: dynamic prediction method

Search Result 549, Processing Time 0.025 seconds

A study on the prediction of wheel wear of railway rolling stock (철도차량 차륜마멸예측에 관한 연구)

  • Kang, Bu-Byoung;Chung, Heung-Chai
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1270-1276
    • /
    • 2003
  • This paper describes an analytical method for wheel wear prediction. The outputs from vehicle dynamic software are used to calculation the wheel wear. Two calculation examples are shown for a high-speed line and a conventional line. Through the comparison of two cases, we can see the wheel wear characteristics on the conventional line and the high-speed line. The conventional line has many curved tracks that cause severe wheel flange wear. The influences of curve radius on wheel wear are also described considering the operational performance of the high speed trainset. A method of calculation using contact patch work model is presented for determination of the evolution by wear railway wheels.

  • PDF

Residual DPCM in HEVC Transform Skip Mode for Screen Content Coding

  • Han, Chan-Hee;Lee, Si-Woong;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.323-326
    • /
    • 2016
  • High Efficiency Video Coding (HEVC) adopts intra transform skip mode, in which a residual block is directly quantized in the pixel domain without transforming the block into the frequency domain. Intra transform skip mode provides a significant coding gain for screen content. However, when intra-prediction errors are not transformed, the errors are often correlated along the intra-prediction direction. This paper introduces a residual differential pulse code modulation (DPCM) method for the intra-predicted and transform-skipped blocks to remove redundancy. The proposed method performs pixel-by-pixel residual prediction along the intra-prediction direction to reduce the dynamic range of intra-prediction errors. Experimental results show that the transform skip mode's Bjøntegaard delta rate (BD-rate) is improved by 12.8% for vertically intra-predicted blocks. Overall, the proposed method shows an average 1.2% reduction in BD-rate, relative to HEVC, with negligible computational complexity.

Prediction Method for the Implicit Interpersonal Trust Between Facebook Users (페이스북 사용자간 내재된 신뢰수준 예측 방법)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.2
    • /
    • pp.177-191
    • /
    • 2013
  • Social network has been expected to increase the value of social capital through online user interactions which remove geographical boundary. However, online users in social networks face challenges of assessing whether the anonymous user and his/her providing information are reliable or not because of limited experiences with a small number of users. Therefore. it is vital to provide a successful trust model which builds and maintains a web of trust. This study aims to propose a prediction method for the interpersonal trust which measures the level of trust about information provider in Facebook. To develop the prediction method. we first investigated behavioral research for trust in social science and extracted 5 antecedents of trust : lenience, ability, steadiness, intimacy, and similarity. Then we measured the antecedents from the history of interactive behavior and built prediction models using the two decision trees and a computational model. We also applied the proposed method to predict interpersonal trust between Facebook users and evaluated the prediction accuracy. The predicted trust metric has dynamic feature which can be adjusted over time according to the interaction between two users.

Bayesian Prediction under Dynamic Generalized Linear Models in Finite Population Sampling

  • Dal Ho Kim;Sang Gil Kang
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.795-805
    • /
    • 1997
  • In this paper, we consider a Bayesian forecasting method for the analysis of repeated surveys. It is assumed that the parameters of the superpopulation model at each time follow a stochastic model. We propose Bayesian prediction procedures for the finite population total under dynamic generalized linear models. Some numerical studies are provided to illustrate the behavior of the proposed predictors.

  • PDF

Dynamic Thermal Rating of Overhead Transmission Lines Based on GRAPES Numerical Weather Forecast

  • Yan, Hongbo;Wang, Yanling;Zhou, Xiaofeng;Liang, Likai;Yin, Zhijun;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.724-736
    • /
    • 2019
  • Dynamic thermal rating technology can effectively improve the thermal load capacity of transmission lines. However, its availability is limited by the quantity and high cost of the hardware facilities. This paper proposes a new dynamic thermal rating technology based on global/regional assimilation and prediction system (GRAPES) and geographic information system (GIS). The paper will also explore the method of obtaining any point meteorological data along the transmission line by using GRAPES and GIS, and provide the strategy of extracting and decoding meteorological data. In this paper, the accuracy of numerical weather prediction was verified from the perspective of time and space. Also, the 750-kV transmission line in Shaanxi Province is considered as an example to analyze. The results of the study indicate that dynamic thermal rating based on GRAPES and GIS can fully excavate the line power potential without additional cost on hardware, which saves a lot of investment.

A Steady Method of Damping Coefficient Prediction for Axisymmetric Projectiles (축대칭 발사체의 감쇠계수 계산을 위한 정상 해법)

  • Park, Soo-Hyung;Kwon, Jang-Hyuk;Yu, Yung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.1-8
    • /
    • 2006
  • A steady prediction method is presented to compute dynamic damping coefficients for axisymmetric projectiles. Viscous flow analysis is essential to the steady method using a zero-spin coning motion in the inertial coordinate frame. The present method is applied to compute the pitching moment and the pitch-damping moment coefficients for the Army-Navy Spinning Rocket. The results are in good agreement with the parabolized Navier-Stokes data, range data, and unsteady prediction data. Predictions for Secant-Ogive-Cylinder configurations are performed to investigate effects of afterbody geometries. To investigate the geometrical effect and flow physics, the longitudinal developments of the coefficients are examined in detail.

A real-time unmeasured dynamic response prediction for nuclear facility pressure pipeline system

  • Seungin Oh ;Hyunwoo Baek ;Kang-Heon Lee ;Dae-Sic Jang;Jihyun Jun ;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2642-2649
    • /
    • 2023
  • A real-time unmeasured dynamic response prediction process for the nuclear power plant pressure pipeline is proposed and its performance is tested in the test-loop system (KAERI). The aim of the process is to predict unmeasurable or unreachable dynamic responses such as acceleration, velocity, and displacement by using a limited amount of directly measured physical responses. It is achieved by combining a well-constructed finite element model and robust inverse force identification algorithm. The pressure pipeline system is described by using the displacement-pressure vibro-acoustic formulation to consider fully filled liquid effect inside the pipeline structure. A robust multiphysics modal projection technique is employed for the real-time sensor synchronized prediction. The inverse force identification method is also derived and employed by using Bathe's time integration method to identify the full-field responses of the target system from the modal domain computation. To validate the performance of the proposed process, an experimental test is extensively performed on the nuclear power plant pressure pipeline test-loop under operation conditions. The results show that the proposed identification process could well estimate the unmeasured acceleration in both frequency and time domain faster than 32,768 samples per sec.

Structural Integrity of PWR Fuel Assembly for Earthquake

  • Jhung, M.J.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.212-221
    • /
    • 1998
  • In the present study, a method for the dynamic analysis of a reactor core is developed. Peak responses for the motions induced from earthquake are obtained for a core model. The dynamic responses such as fuel assembly shear force, bending moment, axial force and displacement, and spacer grid impact loads are investigated. Prediction of fuel assembly stress during an earthquake requires development of a fuel assembly stress analysis model capable of interfacing with the models and results discussed in the dynamic analysis of a reactor core. This analysis uses beam characteristics which describe the overall fuel assembly response. The stress analysis method and its application for the case of an increased seismic level are also presented.

  • PDF

Aerodynamic Design and Performance Prediction of Wind Turbine Blade (풍력터빈 블레이드 공력설계 및 성능예측)

  • Kim, Cheol-Wan;Cho, Tae-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.677-681
    • /
    • 2011
  • Characteristics of vertical and horizontal axis wind turbines are explained. The speed and direction of wind on the blade of the Darrieus type turbine changes very severely. Therefore dynamic stall happens periodically and the wake from the front blade deteriorates the performance of rear blades. Blade element momentum theory(BEMT) is widely utilized for aerodynamic design and performace prediction of horizontal axis wind turbine(HAWT). Computation analysis and wind tunnel test are also performed for the performance prediction.

  • PDF

Measurement of Static and Dynamic Displacement by Image Processing and Study for Prediction Method of Velocity and Acceleration (영상처리를 이용한 정동적 변위 계측과 속도, 가속도 추산방식 연구)

  • Heo, Seok;Kwak, Moon-Kyu;Lee, Ho-Bum
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.527-532
    • /
    • 2010
  • This paper is concerned with the measurement of static and dynamic displacement by image processing(IP) and study for prediction method of velocity and acceleration. To measure the displacement visually, the measurement system consists of a telephoto zoom camera, ccd image device and a computer. The specific target on the white board is used to calculate the displacement of the structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the pixel-size of image. In this paper, we developed for the displacement measurement using the image processing method. The proposed method enables us to measure the vibration measurement, velocity and acceleration directly without any contact. The current resolution of the displacement measurement is limited to 1/100 millimeter scale.

  • PDF