• 제목/요약/키워드: dynamic posture control

검색결과 82건 처리시간 0.022초

Effect of Masticating Chewing Gum on the Balance of Stroke Patients

  • Gim, Mina;Choi, Junghyun
    • 국제물리치료학회지
    • /
    • 제12권2호
    • /
    • pp.2370-2374
    • /
    • 2021
  • Background: Masticating is an activity that is free from temporal or spatial constraints, with an advantage that it can be combined easily with other treatment methods. While several studies have reported a positive effect of the intervention of chewing using the jaw on postural stability, only a few studies were conducted on stroke patients. Objectives: To investigated the effects of masticating chewing gum on the static and dynamic balancing of stroke patients. Design: Randomized cross-over study design. Methods: Nineteen stroke patients were randomly assigned to the chewing group or control group. BT4 was used to measure the static and dynamic balancing abilities. Pre-test measurements were taken before mastication of chewing gum, and post-test measurements were taken after 2 days. The stroke patients in the chewing group were guided to sit on a chair and chew gum for 3 min, and their balancing abilities were simultaneously measured. The balancing abilities of the control group patients were measured while they sat at rest without masticating chewing gum. Results: The chewing group showed significant increases in the measures of static balance (i.e., C90 area, trace length, X mean, and Y mean). In the between-group comparison, the measures of static balance were significantly higher in the chewing group than in the control group. Conclusion: These findings suggest that masticating chewing gum enhanced the static balancing ability of stroke patients. Thus, gum chewing should be considered a viable clinical intervention to control posture in stroke patients.

Analysis and Design of Jumping Robot System Using the Model Transformation Method

  • Suh Jin-Ho;Yamakita Masaki
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.200-210
    • /
    • 2006
  • This paper proposes the motion generation method in which the movement of the 3-links leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is the realization of jumping control moving in a vertical direction, which mimics a cat's behavior. To consider the movement from the point of the constraint mechanical system, a robotics system for realizing the motion will change its configuration according to the position. The effectiveness of the proposed scheme is illustrated by simulation and experimental results.

Open Loop Responses of Posture Complexity in Biomechanics

  • Shin, Youngkyun;Park, Gu-Bum
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.42-50
    • /
    • 2013
  • The reactionary responses to control human standing dynamics were estimated under the assumption that postural complexity mainly occurs in the mid-sagittal plane. During the experiment, the subject was exposed to continuous horizontal perturbation. The ankle and hip joint rotations of the subject mainly contributed to maintaining standing postural control. The designed mobile platform generated anterior/posterior (AP) motion. Non-predictive random translation was used as input for the system. The mean acceleration generated by the platform was measured as $0.44m/s^2$. The measured data were analyzed in the frequency domain by the coherence function and the frequency response function to estimate its dynamic responses. The significant correlation found between the input and output of the postural control system. The frequency response function revealed prominent resonant peaks within its frequency spectrum and magnitude. Subjects behaved as a non-rigid two link inverted pendulum. The analyzed data are consistent with the outcome hypothesized for this study.

척수마비 재활훈련용 이족보행 RGO 로봇의 Dynam ic PLS 생체역학적 특성분석 <응력해석과 FEM을 중심으로> (Analysis of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation)

  • 김명회;장대진;박창일;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.136-141
    • /
    • 2002
  • This paper presents a design and a control of a biped walking RGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new AGO type with servo motors. The gait of a biped walking RGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking RGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking AGO-robot.

  • PDF

동적보행을 위한 생체모방형 4족 보행로봇 AiDIN의 개발 (Development of Quadruped Walking Robot AiDIN for Dynamic Walking)

  • 강태훈;송현섭;구익모;최혁렬
    • 로봇학회논문지
    • /
    • 제1권2호
    • /
    • pp.203-211
    • /
    • 2006
  • In this research, a comprehensive study is performed upon the design of a quadruped walking robot. In advance, the walking posture and skeletal configuration of the vertebrate are analyzed to understand quadrupedal locomotion, and the roles of limbs during walking are investigated. From these, it is known that the forelimbs just play the role of supporting their body and help vault forward, while most of the propulsive force is generated by hind limbs. In addition, with the study of the stances on walking and energy efficiency, design criteria and control method for a quadruped walking robot are derived. The proposed controller, though it is simple, provides a useful framework for controlling a quadruped walking robot. In particular, introduciton of a new rhythmic pattern generator relieves the heavy computational burden because it does not need any computation on kinematics. Finally, the proposed method is validated via dynamic simulations and implementing in a quadruped walking robot, called AiDIN(Artificial Digitigrade for Natural Environment).

  • PDF

동작관찰훈련이 만성 뇌졸중 환자의 앉은 자세에서 균형과 몸통조절능력에 미치는 영향 (The Effect of Action on the Balance and the Trunk Control Ability in the Sit Position of Chronic Stroke Patients)

  • 황준현;이양진;주민철;김성렬
    • 대한통합의학회지
    • /
    • 제7권3호
    • /
    • pp.1-9
    • /
    • 2019
  • Purpose : To find out how action observation training for chronic stroke patients affects their balance and body control abilities in the posture seated in the rehabilitation of stroke. Methods : This study was conducted on 30 subjects who were diagnosed with stroke. The group conducted motion observation training through video clips, while the control group only conducted physical training, and the general physical therapy was performed equally by both counties. The static balance was measured using Biorescue and the dynamic balance was measured using Modified Functional Reach Test (MFRT), Postural Assessment Scale for Stroke, and Trunk Impairment Scale. Results : Static balance showed statistically significant difference in foot pressure (p<.05) as a result of comparison between pre and post exercise training. Dynamic balance was statistically significant (p>.05) as a result of comparing pre and post differences using modified functional reach test. The trunk control ability was statistically significant (p>.001). Comparison between the results of before and after motion observation training showed a statistically significant difference. Conclusion: This study confirmed that exercise training in sitting position was effective for static, dynamic balance ability and trunk control ability of hemiplegic patients due to stroke. These results suggest that the use of motion monitoring in stroke patients may have a positive impact on the diversity and function of rehabilitation.

인체진동을 고려한 재활훈련용 이족보행 RGO 보조기 PLS의 생체역학적 설계와 해석 (I);-인체진동 응력해석과 FEM을 중심으로 - (Design and Analysis of a PLS of the Biped Walking RGO for a Trainning of Rehabilitation Considering Human Vibration(I))

  • 김명회;장대진;양현석;백윤수;박영필;박창일
    • 한국소음진동공학회논문집
    • /
    • 제13권1호
    • /
    • pp.10-18
    • /
    • 2003
  • This paper presented a design and control of a biped walking RGO(robotic gait orthosis) and its simulation. The biped walking RGO was distinguished from the other one by which had a very light-weight and a new RGO system will be made of 12-servo motors and 12-controllers. The vibration evaluation of the dynamic PLS(posterior leaf splint) on the biped walking RGO was used to access by the 3-axis accelerometer with a low frequency vibration of less than 30 Hz. The galt of the biped walking RGO depends on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by analyzing the ZMP (zero moment point) of the biped walking RGO. It was designed according to the human wear type and was able to accomodate itself to the environments of S.C.I. Patients. The Joints of each leg were adopted with a good kinematic characteristics. To analyse joint kinematic properties. we made the strain stress analysis of the dynamic PLS and the analysis study of FEM with a dynamic PLS.

척수마비환자 재활훈련용 왕복보행보조기에 관한 연구 (Study of a New Reciprocating Gait Orthosis for a Spinal Cord Injury Patient)

  • 김명회
    • 대한물리치료과학회지
    • /
    • 제9권1호
    • /
    • pp.81-88
    • /
    • 2002
  • This paper presents a design and a control of a New Reciprocating Gait Orthosis and dynamic walking simulation for this system. The New Reciprocating Gait Orthosis is distinguished from other one by which has a very light-weight and a new RGO type with servo motors. The gait of a New Reciprocating Gait Orthosis depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the New Reciprocating Gait Orthosis. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal card injury patients are able to train effectively with a Reciprocating Gait Orthosis. The New Reciprocating Gait Orthosis was able to keep smooth walling by the orthotic servo motors and hybrid system, make a sequence of flexion and extension of the joint during the walking. Also, the New Reciprocating Gait Orthosis turned out to be a satisfactory orthosis for walling training, for the spinal cord injury patient.

  • PDF

The Effect of Postural Stability on Genu Varum in Young Adults

  • Chae, Yun-Won;Park, Ji-Won;Park, Seol
    • The Journal of Korean Physical Therapy
    • /
    • 제24권6호
    • /
    • pp.419-422
    • /
    • 2012
  • Purpose: Malalignment of the lower limbs may increases the difficulty of maintaining equilibrium. The purpose of this study was to study the effects of genu varum and poor posture in the sagittal plane on postural stability. Methods: We had 27 subjects with varus and 27 normal subjects participate in this study. Subjects for whom the distance between the medial epicondyles in the knee joint was more than 3 cm were classified as varus group, and subjects for whom the distance was less than 3 cm were classified as normal group. The measurements of static and dynamic stability were used overall stability index (OSI), anterioposterior stability index (APSI), and mediolateral stability index (MLSI) using a Biodex balance system. Results: When measuring the static stability index, there were significant differences in the mediolateral stability index between the varus and control groups. When measuring the dynamic stability index, there were significant differences in the overall, anteriorposterior, and mediolateral stability index between the varus and control groups. These results demonstrated that genu varum affects mediolateral movement in static stability, and overall, anterioposterior and mediolateral movements in dynamic stability. Conclusion: As genu varum affects static and dynamic stability in young adults, it increases the risk of injuries or falls. Exercise and surgery are required for realigning the genu varum. Future studies about postural stability in young children and elderly people who have a risk of falls due to lower postural control ability, are needed, as well as in young adults.

허리둘레 변화 감지기를 이용한 복부수축이 보건의료 종사자의 몸통 근지구력과 자세조절에 미치는 효과 (The Effect of Abdominal Muscle Contraction Using Waist Circumference Change Sensors on Trunk Muscle Endurance and Postural Control in Healthcare Workers)

  • 유근수;김창범;조인호
    • PNF and Movement
    • /
    • 제17권3호
    • /
    • pp.451-461
    • /
    • 2019
  • Purpose: This study identified the effect of abdominal muscle contraction using changes in waist circumference for healthcare workers with back pain due to inadequate posture during working hours. Methods: In this study, we provided educational training focused on posture alignment and utilized waist circumference change sensors to induce the contraction of abdominal muscles as a method to address low back pain in healthcare workers. All 32 participants received the same training and then were assigned to two groups: wearing the keeping core band (CB) and not wearing the keeping core band (NCB). For the CB group, the waist circumference change sensor was applied for 6 weeks during working hours. Wilcoxon's signed-ranks test and paired t-tests were used to compare the differences between the groups. All statistical significance levels were set to α=0.05. Results: Trunk muscle endurance increased significantly in the CB group. There was no significant difference in stability index to evaluate static postural control, but active hip abduction tests, which evaluate dynamic postural control, showed significant decrease in the CB group. Conclusion: These results suggest that the induction of abdominal contraction using the waist circumference change sensor may improve the trunk muscle endurance and the postural control ability of the hip and pelvis of healthcare workers.