• 제목/요약/키워드: dynamic optimization model

검색결과 610건 처리시간 0.03초

고속전철의 동적특성에 따른 효율적인 현가장치 최적화 방안 연구 (A Study on the Efficient Optimization of Suspension Characteristics for Dynamic Behavior of the High Speed Train)

  • 박찬경;김영국;현승호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.501-506
    • /
    • 2001
  • Computer modeling is essential to evaluate possible design of suspension for a railway vehicles. By creating a simulation, the engineers are able to assess the feasibility of a given design and change the design factors to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have turned to surrogate modeling. A surrogate model is essentially a regression performed on a data sampling of the simulation. In the most general sense, metamodels(surrogate model) take the form $y(x)=f(x)+{\varepsilon}$, where y(x) is the true simulation output, f(x) is the metamodel output, and $\varepsilon$ is the error between the two. In this paper, a second order polynomial equation is partially used as a metamodel to represent the forty-six dynamic performances for high speed train. The number of factors as design variables of the metamodel is twenty-nine, which are composed the dynamic characteristics of suspension. This metamodel is used to search the optimum values of suspension characteristics which minimize the dynamic responses for high speed train. This optimization is a multi-objective problem which have many design variables. This paper shows that the response surface model which is made through the design of analysis of computer experiments method is very efficient to solve this complex optimization problem.

  • PDF

유전적 알고리듬을 적용하여 머시닝센터 베드두께의 동하중을 고려한 최적설계에 관한 연구 (A Study on the design Optimization of Thickness of Machiningcenter Bed under Dynamic Loading by using Genetic Algorithm)

  • 조백희
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 1999
  • This paper presents resizing design optimization method by utilizing genetic algorithm(GA), which consists of three basic operators : reproduction, crossover and mutation. The fitness and penalty function for resizing optimization problem are defined, and the flowchart of the developed computer program along with the descriptions of each modules is presented. Also, modelling for flexible-body dynamic analysis is presented. The model is composed of bodies, joints, and force elements such as translational spring-damper-actuator. The design objects si to determine the wall thickness for minimum weight under dynamic displacement constraint.

  • PDF

근육 파라미터 최적화를 통한 발목관절 모멘트 추정 모델 개발 및 평가 (Development and evaluation of estimation model of ankle joint moment from optimization of muscle parameters)

  • 손종상;황성재;이진섭;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권4호
    • /
    • pp.310-315
    • /
    • 2010
  • Estimation of muscle forces is important in biomechanics, therefore many researchers have tried to build a muscle model. Recently, optimization techniques for adjusting muscle parameters, i.e. EMG-driven model, have been used to estimate muscle forces and predict joint moments. In this study, an EMG-driven model based on the previous studies has been developed and isometric and isokinetic contraction movements were evaluated to validate the developed model. One healthy male participated in this study. The dynamometer tasks were performed for maximum voluntary isometric contractions (MVIC) for ankle dorsi/plantarflexors, isokinetic contraction at both $30^{\circ}/s$ and $60^{\circ}/s$. EMGs were recorded from the tibialis anterior, gastrocnemius medialis, gastrocnemius lateralis and soleus muscles at the sampling rate of 1000 Hz. The MVIC trial was used to customize the EMG-driven model to the specific subject. Once the subject's own model was developed, the model was used to predict the ankle joint moment for the other two dynamic movements. When no optimization was applied to characterize the muscle parameters, weak correlations were observed between the model prediction and the measured joint moment with large RMS error over 100% (r = 0.468 (123%) and r = 0.060 (159%) in $30^{\circ}/s$ and $60^{\circ}/s$ dynamic movements, respectively). However, once optimization was applied to adjust the muscle parameters, the predicted joint moment was highly similar to the measured joint moment with relatively small RMS error below 40% (r = 0.955 (21%) and r = 0.819 (36%) and in $30^{\circ}/s$ and $60^{\circ}/s$ dynamic movements, respectively). We expect that our EMG-driven model will be employed in our future efforts to estimate muscle forces of the elderly.

Optimization Design for Dynamic Characters of Electromagnetic Apparatus Based on Niche Sorting Multi-objective Particle Swarm Algorithm

  • Xu, Le;You, Jiaxin;Yu, Haidan;Liang, Huimin
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.660-665
    • /
    • 2016
  • The electromagnetic apparatus plays an important role in high power electrical systems. It is of great importance to provide an effective approach for the optimization of the high power electromagnetic apparatus. However, premature convergence and few Pareto solution set of the optimization for electromagnetic apparatus always happen. This paper proposed a modified multi-objective particle swarm optimization algorithm based on the niche sorting strategy. Applying to the modified algorithm, this paper guarantee the better Pareto optimal front with an enhanced distribution. Aiming at shortcomings in the closing bounce and slow breaking velocity of electromagnetic apparatus, the multi-objective optimization model was established on the basis of the traditional optimization. Besides, by means of the improved multi-objective particle swarm optimization algorithm, this paper processed the model and obtained a series of optimized parameters (decision variables). Compared with other different classical algorithms, the modified algorithm has a satisfactory performance in the multi-objective optimization problems in the electromagnetic apparatus.

최적화용 신경망의 성능개선을 위한 새로운 최적화 기법 (A new optimization method for improving the performance of neural networks for optimization)

  • 조영현
    • 전자공학회논문지C
    • /
    • 제34C권12호
    • /
    • pp.61-69
    • /
    • 1997
  • This paper proposes a new method for improving the performances of the neural network for optimization using a hyubrid of gradient descent method and dynamic tunneling system. The update rule of gradient descent method, which has the fast convergence characteristic, is applied for high-speed optimization. The update rule of dynamic tunneling system, which is the deterministic method with a tunneling phenomenon, is applied for global optimization. Having converged to the for escaping the local minima by applying the dynamic tunneling system. The proposed method has been applied to the travelling salesman problems and the optimal task partition problems to evaluate to that of hopfield model using the update rule of gradient descent method.

  • PDF

Dynamic Collaborative Cloud Service Platform: Opportunities and Challenges

  • Yoon, Chang-Woo;Hassan, Mohammad Mehedi;Lee, Hyun-Woo;Ryu, Won;Huh, Eui-Nam
    • ETRI Journal
    • /
    • 제32권4호
    • /
    • pp.634-637
    • /
    • 2010
  • This letter presents a model for a dynamic collaboration (DC) platform among cloud providers (CPs) that prevents adverse business impacts, cloud vendor lock-in and violation of service level agreements with consumers, and also offers collaborative cloud services to consumers. We consider two major challenges. The first challenge is to find an appropriate market model in order to enable the DC platform. The second is to select suitable collaborative partners to provide services. We propose a novel combinatorial auction-based cloud market model that enables a DC platform among CPs. We also propose a new promising multi-objective optimization model to quantitatively evaluate the partners. Simulation experiments were conducted to verify both of the proposed models.

Zener 모델을 사용한 동흡진기 특성 연구 (A Study on Dynamic Vibration Absorber Using Zener's Model)

  • 오일권;임승현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.159-163
    • /
    • 2005
  • A dynamic vibration absorber using the Zener's model has been taken into account with respect to frequency response characteristics. The concept of the tuned mass damper with a single degree of freedom has been well applied for many industrial fields, because many researchers have extensively studied various basic characteristics, performance and optimization methods for long time. The Zener's model has an additional spring, which is connected between a damper and a mass, while the tuned mass damper with a single degree of freedom consists of a mass, a spring and a damper connected in parallel. In previous works, the basic performance and characteristics of the Zoner's model as a dynamic vibration absorber have not been investigated. In this study, the frequency response characteristics according to the parameter change of the Zener's model have been described. In order to find the optimum value of several parameters, we use iterative scheme with three dimensional frequency response diagram by MATLAB programming. Present results shows the Zener's model can give more good damping performance than the simple tuned mass damper, and the numerical of optimization method should be developed for the efficient vibration absorbtion.

  • PDF

Evolutionary-base finite element model updating and damage detection using modal testing results

  • Vahidi, Mehdi;Vahdani, Shahram;Rahimian, Mohammad;Jamshidi, Nima;Kanee, Alireza Taghavee
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.339-350
    • /
    • 2019
  • This research focuses on finite element model updating and damage assessment of structures at element level based on global nondestructive test results. For this purpose, an optimization system is generated to minimize the structural dynamic parameters discrepancies between numerical and experimental models. Objective functions are selected based on the square of Euclidean norm error of vibration frequencies and modal assurance criterion of mode shapes. In order to update the finite element model and detect local damages within the structural members, modern optimization techniques is implemented according to the evolutionary algorithms to meet the global optimized solution. Using a simulated numerical example, application of genetic algorithm (GA), particle swarm (PSO) and artificial bee colony (ABC) algorithms are investigated in FE model updating and damage detection problems to consider their accuracy and convergence characteristics. Then, a hybrid multi stage optimization method is presented merging advantages of PSO and ABC methods in finding damage location and extent. The efficiency of the methods have been examined using two simulated numerical examples, a laboratory dynamic test and a high-rise building field ambient vibration test results. The implemented evolutionary updating methods show successful results in accuracy and speed considering the incomplete and noisy experimental measured data.

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Ahmad, Furqan;Lee, Chang-Yeol;Kim, Tae-Ok;Park, Myung-Kyun
    • 한국가스학회지
    • /
    • 제15권5호
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, an analytical model of a cantilever beam having a midpoint load is considered for structural optimization and design. This involves creation of the geometry through a parametric study of all design variables. For this purpose, the optimization of the cantilever beam was elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight by FEM (finite element method) analysis. Such geometry can be obtained by different combinations of width and height, so that the beam may have the same cross-sectional area, yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration, different dynamic analyses were performed simultaneously to identify the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. Next, by introducing damping effects, the tip displacement and bending stress at the fixed end was evaluated under dynamic loads of varying frequency. Investigation of the results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design it must be aided by dynamic analysis as well.

관류보일러 스팀 온도의 동역학 행렬 제어에 관한 연구 (A Study on Dynamic Matrix Control to Boiler Steam Temperature)

  • 김우헌;문운철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.323-325
    • /
    • 2009
  • In this paper, we present simulation results of Dynamic Matrix Control(DMC) to a boiler steam temperature. In order to control of steam temperature, we choose the input-output variables and generate the step response model by each input variable's step test. After that, the control structure executes on-line control with optimization using step response model. Proposed controller is applied to the APESS(Doosan company's boiler model simulator) and it is observed that the simulation results show satisfactory performance of proposed control.

  • PDF