• Title/Summary/Keyword: dynamic of reason

Search Result 415, Processing Time 0.025 seconds

Real Time Control for Robot Manipulator Using Transputer (트랜스퓨터를 이용한 로보트 매니퓰레이터의 실시간 제어)

  • Jang, Yong-Geun;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.397-400
    • /
    • 1992
  • Many dynamic control have been proposed; however, most of them are limited within stage of simulation study. The main reason is that the computations required for inverse dynamics are far beyond the ability of the present commercially available microprocessors. In this paper, In order to achieve real-time processing in robot dynamic control, a parallel processing computer for robot dynamic control is implemented using two transputer. Two transputer compute two degree of freedom robot. The transputer is a special purpose MPU for parallel processing. Transputers are used in networks to build a high performance concurrent system. A network of transputers and peripheral controllers is constructed using point-to-point communication. To gain most benifit from the transputer architecture, the whole system is programmed in OCCAM which is a high level language for concurrent applications. This control algorithm is applied to the RHINO SCARA type manipulator. We could taked about 438.6 microseconds to compute robot dynamic with two-processors.

  • PDF

An Experimental Study on the Size Effect influencing to Mechanical Behavior of Reinforced Concrete Structures (철근 콘크리트 구조물의 역학적 거동에 미치는 크기효과에 관한 실험적 연구)

  • Park, Hyun-Soo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.366-371
    • /
    • 1995
  • it is extremely difficult to perform the dynamic experiments with full-scale specimens. For this reason, small-scale structural models offer an attractive means to peform dynamic loading experiments. The purpose of this reserch is to estabilish the reliance for modeling techniques of small-scale specimens subjected to dynamic cyclic loading. This research focused on the similitude requirements for reinforced concrete frame structures subjected to dynamic cyclic loading. Length scale ratio of specimens were 1:2:4, and six specimens were tested at the frequencies of 0.0025Hz~2.0Hz. It was confirmed that modeling techniques based on the similitude requirements were useful method to evaluate the behavior of full-size R/C structures subjected to earthquake type loading.

  • PDF

Noise Reduction of HDR Detail Layer Using a Kalman Filter Adapted to Local Image Activity (국부 영상 활동도에 적응적인 칼만 필터를 이용한 HDR 세부 영상 레이어의 잡음 제거)

  • Kim, Tae-Kyu;Song, Inho;Lee, Sung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.1
    • /
    • pp.10-17
    • /
    • 2019
  • In High Dynamic Range (HDR) image processing, tone mapping is the process to compress an input image into a Low Dynamic Range (LDR) image. In most cases, the reason that detail preservation is prior to take over tone mapping is that the dynamic range is significantly different between input and output images. In the case of iCAM06, details are separated by using a bilateral filter, however, it causes noise amplification at the dim surround region. Thus, we suggest that the detail signal, which is separated from the bilateral filter, is combined with the base signal after an adaptive Kalman filter is applied according to the local standard deviation. We confirmed that the proposed method enhances the HDR images quality by checking the noise reduction in a dim surround region.

Thrust Generation on Flapping-Aifoil by Dynamic Stall (동적 실속을 이용한 Flapping-Airfoil의 추력 발생)

  • Lee Jung Sang;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.35-40
    • /
    • 2002
  • This paper deals with a thrust generation on flapping-airfoil by dynamic stall. Dynamic stall refers to a series of complicated aerodynamic phenomena accompanied by a stall delay in unsteady motion. In most cases, once it occurs, the dynamic stall may lead to an abrupt fluctuation of aerodynamic forces. An inverse $k\acute{a}rm\acute{a}n$ vortex has been considered as a main reason for a thrust generation. In this paper, however, we have found out that a thrust is closely related to reduced frequency and leading edge vortex in addition to inverse Karman vortex. In order to certify our opinion, picking and plunging motions were calculated with the parameter of amplitude and frequency by using the unsteady, incompressible Navier-Stokes flow solver with a two-equation turbulence model. For more efficient computation, it is parallelized by MPI programming method.

  • PDF

Dynamic Analysis of a Tilting Actuator for a Projection TV (프로젝션 TV용 틸팅 액추에이터의 동특성 해석)

  • Im, Hyung-Bin;Park, Chul-Jun;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.192-198
    • /
    • 2008
  • A dynamic analysis of a tilting actuator for a projection TV is presented in this study. Severe vibration of a tilting actuator deteriorates the video quality of a projection TV. For this reason, a dynamic analysis of the tilting actuator system is essential to improve the video quality. The dynamic behaviors of the mirror reactive-type tilting actuator are examined in order to obtain design requirements of the lens transmissive-type tilting actuator. Based on these design requirements, a basic design is performed for the lens transmissive-type tilting actuator. With the basic design, the dynamic characteristics of the lens transmissive-type actuator are investigated by the finite element analysis After the prototype of the actuator is manufactured, the dynamic behaviors of the prototype are examined by experiments. As a result of this study, a new design for the hinge configuration of the actuator is suggested for better performance.

The Repeating Decimal from the Static and Dynamic View Point (정적 동적 관점에서의 순환소수)

  • 조한혁;최영기
    • School Mathematics
    • /
    • v.1 no.2
    • /
    • pp.605-615
    • /
    • 1999
  • In this paper, we explain the pedagogical phenomena appeared in the learning of 0.$\dot{9}$ = 1 in terms of its intrinsic mathematical structure, and investigate the reason why such phenomena happen. Also we analyze such phenomena through the dialogue between student and teacher, and present some instruction idea from the mathematical and educational view points.

  • PDF

Context Awareness in Ubiquitous Computing

  • Park, Young-Tack
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.119-136
    • /
    • 2004
  • ㆍuT ontologies can enable context awareness to represent more rich information. ㆍOntologies enable uT agents to reason about dynamic contexts. ㆍMulti agents can use ontologies to communicate between agents.

  • PDF

Inverse Dynamic Modeling of a Stair-Climbing Robotic Platform with Flip Locomotion (회전과 뒤집기 방식의 계단등반 로봇의 역동역학 모델링)

  • Choi, Jae Neung;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.654-661
    • /
    • 2015
  • Stairs are the most popular obstacles in buildings and factories. To enlarge the application areas of a field robotic platform, stair-climbing is very important mission. One important reason why a stair-climbing is difficult is that stairs are various in sizes. To achieve autonomous climbing of various-sized stairs, dynamic modeling is essential. In this research, an inverse dynamic modeling is performed to enable an autonomous stair climbing. Stair-climbing robotic platform with flip locomotion, named FilpBot, is analyzed. The FlipBot platform has advantages of robust stair-climbing of various sizes with constant speed, but the autonomous operation is not yet capable. Based on external constraints and the postures of the robot, inverse dynamic models are derived. The models are switched by the constraints and postures to analyze the continuous motion during stair-climbing. The constraints are changed according to the stair size, therefore the analysis results are different each other. The results of the inverse dynamic modeling are going to be used in motor design and autonomous control of the robotic platform.

Seismic stability analysis of tunnel face in purely cohesive soil by a pseudo-dynamic approach

  • Huang, Qi;Zou, Jin-feng;Qian, Ze-hang
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • To give a solution for seismic stability of tunnel faces subjected to earthquake ground shakings, the pseudo-dynamic approach is originally introduced to analyze tunnel face stability in this study. In the light of the upper-bound theorem of limit analysis, an advanced three-dimensional mechanism combined with pseudo-dynamic approach is proposed. Based on this mechanism, the required support pressure on tunnel face can be obtained by equaling external work rates to the internal energy dissipation and implementing an optimization searching procedure related to time. Both time and space feature of seismic waves are properly accounted for in the proposed mechanism. For this reason, the proposed mechanism can better represent the actual influence of seismic motion and has a remarkable advantage in evaluating the effects of vertical seismic acceleration, soil amplification factor, seismic wave period and initial phase difference on tunnel face stability. Furthermore, the pseudo-dynamic approach is compared with the pseudo-static approach. The difference between them is illustrated from a new but understandable perspective. The comparison demonstrates that the pseudo-static approach is a conservative method but still could provide precise enough results as the pseudo-dynamic approach if the value of seismic wavelengths is large or the height of soil structures is small.

Dynamic Fracture Testing of Welding part of Nuclear Piping by Using Normalization Method (정규화법을 이용한 원전배관 용접부의 동하중 파괴저항시험)

  • Huh, Yong;Cho, Sung-Keun;Park, Jae-Sil;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.262-267
    • /
    • 2004
  • The unloading compliance method is the most commonly used method to evaluate the fracture resistance characteristics of a material. In dynamic loading condition, the direct current potential drop(DCPD) method has been used because the unloading compliance method can not be applied due to the discontinuity of loading. However, even in the dynamic test using DCPD method, there is a problem that the voltage drops sharply on the initiation of crack. For the reason metioned above, the normalization method was suggested on ASTM E 1820 which is revised recently, as a new method to evaluate the dynamic fracture resistance characteristic. The nomalization method can be used to obtain a fracture resistance curve directly from a load-load line displacement. In this study, we obtained two fracture resistance curves from static test of welding part of nuclear piping both by unloading compliance and nomalization method. The two curves were almost same each other, so the adaptability of the nomalization method has been proved. We conducted a dynamic fracture resistance test for the same material. The fracture resistance curve from the dynamic test was obtained by normalization method and compared to that of the static test result.

  • PDF