• 제목/요약/키워드: dynamic numerical analysis

검색결과 2,578건 처리시간 0.03초

비대칭 보의 굽힘-비틀림 연성 진동 해석 (Dynamic analysis of bending-torsion coupled vibration of non-symmetric beam)

  • 강병식;홍성욱;박중윤;조용주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.220-225
    • /
    • 2001
  • Asymmetric beams cause complicated vibration phenomena due to the inherent bending-torsion coupled vibration. In this paper, an exact dynamic element matrix for the bending-torsion coupled vibration of asymmetric beam is derived. An application of the derived exact dynamic element matrix is demonstrated by an illustrative example, wherein the natural frequencies by the proposed modeling method are compared with those available in the literature. Another numerical example is also illustrated which deals with a general beam with joints. The numerical study shows that the exact dynamic element model is useful for the dynamic analysis of asymmetric bending-torsion coupled beams.

  • PDF

동적 하중을 받는 암반 구조물의 수치해석 변수에 대한 고찰 (A Study on the Numerical Analysis Variables of Rock Structures Subject to Dynamic Loads)

  • 류창하;최병희;장형수
    • 화약ㆍ발파
    • /
    • 제36권3호
    • /
    • pp.10-18
    • /
    • 2018
  • 동적 하중을 받는 암반의 역학적 거동은, 같은 크기의 최대 하중이라도 정적으로 가해지는 경우와는 다른 특성을 보인다. 동적 하중 하에서의 거동 특성을 규명하기 위한 실험적 접근 방법은 동적 하중의 제어와 계측 및 해석에 있어서 정적 조건에서의 실험 방법보다 더 많은 어려움이 있다. 수치해석적 방법은 물리적 실험이 아니라 수치해석적으로 실험을 실시함으로써 물리적 제약을 덜 받으므로 설계 단계에서 매우 유력한 해석 도구가 될 수 있다. 그러나 수치해석방법은 해석방법의 알고리즘이 적정하더라도, 입력 자료와 경계조건의 설정에 따라 계산 결과가 많이 달라질 수 있으므로 해석 시 세심한 주의가 필요하다. 본 논문에서는 동적 하중을 받는 암반 구조물의 거동을 수치해석적으로 검토할 때, 경계 조건, 동적 하중과 계산 시간 간격, 동적 하중 특성이 계산 결과에 미치는 영향을 검토하여, 동적 해석 시 경계조건과 계산 시간 간격의 설정 지침을 제공하고자 하였다.

동적 외연적/강소성 유한요소 해석과 차체판넬성형에의 적용 (A Dynamic Explicit/Rigid-plastic Finite Element Analysis and its Application to Auto-body Panel Stamping Process)

  • 정동원;양동열
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.16-25
    • /
    • 1996
  • In the present work a rigid-plastic finite element formulation using dynamic explicit time integration scheme is proposed for numerical analysis of auto-body panel stamping processes. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. A damping scheme is proposed in order to achieve a stable solution procedure in dynamic sheet forming problems. In order to improve the drawbacks of the conventional membrane elements, BEAM(abbreviated from Bending Energy Augmented Membrane) elements are employed. Rotational damping and spring about the drilling direction are introduced to prevent a zero energy mode. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and the direct trial-and-error method. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oilpan, a fuel tank and a front fender. The numerical results of explicit analysis are compared with the implicit results with good agreements and it is shown that the explicit scheme requires much shorter computational time, especially when the problem becomes more complicated. It is thus shown that the proposed dynamic explicit rigid-plastic finite element method enables an effective computation for complicated autobody panel stamping processes.

  • PDF

여러 스팬을 갖는 티모센코 보 구조물의 이동하중에 의한 진동 해석 (Vibration Analysis of Multi-Span Timoshenko Beams Due to Moving Loads)

  • 홍성욱;김종욱
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2058-2066
    • /
    • 1999
  • The present paper proposes a new dynamic analysis method for multi-span Timoshenko beam structures supported by joints with damping subject to moving loads. An exact dynamic element matrix method is adopted to model Timoshenko beam structures. A generalized modal analysis method is applied to derive response formulae for beam structures subject to moving loads. The proposed method offers an exact and closed form solution. Two numerical examples are provided for validating and illustrating the proposed method. In the first numerical example, a single span beam with multiple moving loads is considered. A dynamic analysis on a multi-span beam under a moving load is considered as the second example, in which the flexibility and damping of supporting joints are taken into account. The numerical study proves that the proposed method is useful for the vibration analysis of multi-span beam-hype structures by moving loads.

지중공동을 고려한 지반-말뚝-구조물 상호작용계의 지진응답해석 (Seismic Response Analysis of Soil-Pile-Structure Interaction System considering the Underground Cavity)

  • 김민규;임윤묵;김문겸;이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.117-124
    • /
    • 2002
  • The major purpose of this study is to determine the dynamic behavior of soil-pile-structure interaction system considering the underground cavity. For the analysis, a numerical method fur ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. For the verification of dynamic analysis in the frequency domain, both forced vibration analysis and free-field response analysis are performed. The behavior of soil non-linearity is considered using the equivalent linear approximation method. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis considering the underground cavity in 2D problem.

  • PDF

동적 신뢰성 해석 기법의 수치 안정성에 관하여 (On the Numerical Stability of Dynamic Reliability Analysis Method)

  • 이도근;옥승용
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.49-57
    • /
    • 2020
  • In comparison with the existing static reliability analysis methods, the dynamic reliability analysis(DyRA) method is more suitable for estimating the failure probability of a structure subjected to earthquake excitations because it can take into account the frequency characteristics and damping capacity of the structure. However, the DyRA is known to have an issue of numerical stability due to the uncertainty in random sampling of the earthquake excitations. In order to solve this numerical stability issue in the DyRA approach, this study proposed two earthquake-scale factors. The first factor is defined as the ratio of the first earthquake excitation over the maximum value of the remaining excitations, and the second factor is defined as the condition number of the matrix consisting of the earthquake excitations. Then, we have performed parametric studies of two factors on numerical stability of the DyRA method. In illustrative example, it was clearly confirmed that the two factors can be used to verify the numerical stability of the proposed DyRA method. However, there exists a difference between the two factors. The first factor showed some overlapping region between the stable results and the unstable results so that it requires some additional reliability analysis to guarantee the stability of the DyRA method. On the contrary, the second factor clearly distinguished the stable and unstable results of the DyRA method without any overlapping region. Therefore, the second factor can be said to be better than the first factor as the criterion to determine whether or not the proposed DyRA method guarantees its numerical stability. In addition, the accuracy of the numerical analysis results of the proposed DyRA has been verified in comparison with those of the existing first-order reliability method(FORM), Monte Carlo simulation(MCS) method and subset simulation method(SSM). The comparative results confirmed that the proposed DyRA method can provide accurate and reliable estimation of the structural failure probability while maintaining the superior numerical efficiency over the existing methods.

Investigating dynamic stability behavior of sandwich plates with porous core based on a numerical approach

  • Zhu, Zhihui;Zhu, Meifang
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.609-615
    • /
    • 2022
  • A numerical approach for dynamic stability analysis of sandwich plates has been provided using Chebyshev-Ritz-Bolotin approach. The sandwich plate with porous core has been formulated according to a higher-order plate. All of material properties are assumed to be dependent of porosity factor which determines the amount or volume of pores. The sandwich plate has also been assumed to be under periodic in-plane loading of compressive type. It will be shown that stability boundaries of the sandwich plate are dependent on static and dynamical load factors, porosity factor, porosity variation and core thickness.

분산형 고속전철의 34자유도 동역학적 모델링을 통한 철도차량의 동적 특성 해석 (Dynamic Analysis of Railway Vehicle Using Mathematical Modeling of High-Speed EMU)

  • 이래민;이필호;이상원;구자춘;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1426-1434
    • /
    • 2008
  • This paper addresses the numerical study on the dynamics of the High-speed EMU to enhance the ride quality. The 17 and 34 degrees-of-freedom (DOF) dynamic models for a single railway vehicle are proposed, and its vibrational characteristics according to the nonuniform rail profile are analyzed via Matlab. The validity of the proposed 34-DOF model are verified by comparing its dynamic characteristics and those from ADAMS/Rail. In addition, the critical dynamic parameters are identified by the parametric analysis, and rough design variables to reduce the vibration level of the railway vehicle are proposed. Finally, the frequency analysis - FFT - are conducted to extract the resonant frequencies, which have a significant influence on the determination of the critical speed of the railway vehicle. It is demonstrated that the results from the Matlab-based numerical analysis of the 34-DOF dynamic model are similar to those from ADAMS/Rail.

  • PDF

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Pulse Shaper를 이용한 SHPB 실험 응력파 제어 효과의 해석 및 실험적 검증 (Numerical and Experimental Verification of Stress Wave Control Effect in SHPB Experiment using Pulse Shaper)

  • 김용희;우민아;강범수;김정
    • 소성∙가공
    • /
    • 제26권5호
    • /
    • pp.314-322
    • /
    • 2017
  • In the high-speed forming analysis, dynamic material properties considering a high strain rate are required. The split Hopkinson pressure bar (SHPB) experiment was performed for measuring dynamic material properties under high strain rate. The pulse shaping method was used to improve the accuracy of the SHPB experiment. A pulse shaper attached to the front of the incident bar was used for specimen dynamic stress equilibrium through stress wave control. Numerical analysis and SHPB test were performed to verify whether the pulse shaper affects the dynamic stress equilibrium in copper and Al6061 specimens. The results of SHPB test and numerical analysis show that the pulse shaper contributes to the dynamic stress equilibrium. Based on the improved stress equilibrium using a pulse shaper, the flow stress curves for copper and Al6061 materials were obtained at strain rates of 1344.4/sec and 1291.6/sec, respectively.