• Title/Summary/Keyword: dynamic neural unit

Search Result 45, Processing Time 0.028 seconds

Propagation Neural Networks for Real-time Recognition of Error Data (에라 정보의 실시간 인식을 위한 전파신경망)

  • 김종만;황종선;김영민
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.46-51
    • /
    • 2001
  • For Fast Real-time Recognition of Nonlinear Error Data, a new Neural Network algorithm which recognized the map in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of map, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear map information is processed.

  • PDF

Dynamic Neural Units and Genetic Algorithms With Applications to the Optimal Control of Nonlinear Systems (신경망과 유전 알고리즘을 사용한 비선형 시스템의 최적 제어)

  • Cho Hyeon-Seob;Min Jin-Kyoung;Lee Hyung-Chung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.217-220
    • /
    • 2004
  • 'Dynamic Neural Unit'(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised loaming algorithms, such as the backpropagation (BP) algorithm, that needs training information In each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

An Intelligent Control of TRack Vehicle Using Fuzzy-Neural Network Control Method (퍼지-신경회로망 제어기법에 의한 궤도차량의 지능제어)

  • 신행봉;김용태;조길수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.210-215
    • /
    • 1999
  • In this paper, a new approach to the dynamic control technique for track vehicle system using fuzzy-neural network control technique is proposed. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

The Adaptation Controller Plan for a Transient State Efficiency Improvement (과도상태 성능 개선을 위한 적응 제어기 설계)

  • Cho, Hyun-Seob;Jun, Ho-Ik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.379-381
    • /
    • 2011
  • Dynamic Neural Unit(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

Unknown Nonlinear Systems Control Using Genetic Algorithms (Geneo-tic Algorithms를 이용한 비선형 시스템 제어)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.443-445
    • /
    • 2009
  • Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

Correlation Propagation Neural Networks for processing On-line Interpolation of Multi-dimention Information (임의의 다차원 정보의 온라인 전송을 위한 상관기법전파신경망)

  • Kim, Jong-Man;Kim, Won-Sop
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.83-87
    • /
    • 2007
  • Correlation Propagation Neural Networks is proposed for On-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interpolation is achieved. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D CPNN hardware has been implemented with general purpose analog ICs to test the interpolation capability of the proposed neural networks. Experiments with static and dynamic signals have been done upon the CPNN hardware.

  • PDF

Development of Information Propagation Neural Networks processing On-line Interpolation (실시간 보간 가능을 갖는 정보전파신경망의 개발)

  • Kim, Jong-Man;Sin, Dong-Yong;Kim, Hyong-Suk;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.461-464
    • /
    • 1998
  • Lateral Information Propagation Neural Networks (LIPN) is proposed for on-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interpolation is achieved. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D LIPN hardware has been implemented with general purpose analog ICs to test the interpolation capability of the proposed neural networks. Experiments with static and dynamic signals have been done upon the LIPN hardware.

  • PDF

System Development for Education and Design of a Nonlinear Controller with On-Line Algorithm

  • Park, Seong-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.215-221
    • /
    • 2003
  • The education system in this paper is used to demonstrate and educate the effects of electromagnetic induction. Placing an aluminum ring over the core and switching on AC source causes the ring to jump in the air due to induced currents in the ring producing a magnetic field opposed to that produced in the core. To control the position of the ring by only the current, it is to require nonlinear control algorithm and control board that is composed of photo sensors, decode circuit, computer communication, and power electronics circuit. This paper provides the development for education system in detail and the effects of dynamic neural networks for nonlinear control with on line is studied.

Information Propagation Neural Networks for Real-time Recognition of Load Vehicles (도로 장애물의 실시간 인식을 위한 정보전파 신경회로망)

  • Kim, Jong-Man;Kim, Hyong-Suk;Kim, Sung-Joong;Sin, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.546-549
    • /
    • 1999
  • For the safty driving of an automobile which is become individual requisites, a new Neural Network algorithm which recognized the load vehicles in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of vehicles, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed 1-D LIPN hardware has been composed and various experiments with static and dynamic signals have been implmented.

  • PDF

Real-Time Neural Networks for Information Propagation of Load Vehicles in Remote (원격지 자동차의 정보 전송을 위한 실시간 신경망)

  • Kim, Jong-Man;Kim, Won-Sop;Sin, Dong-Yong;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2130-2133
    • /
    • 2003
  • For real-time recognizing of the load vehicles a new Neural Network algorithm is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a Processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of vehicles, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through severa simulation experiments, real time reconstruction nonlinear image information is Processed. 1-D hardware has been composed and various experi with static and dynamic signals have implemented.

  • PDF