• Title/Summary/Keyword: dynamic movement

Search Result 972, Processing Time 0.032 seconds

A Dynamic Menu Layout of the Board Writing Software for IWB system considering the Writing Position and the Frequency of Menu Usage (판서 위치와 메뉴 사용 빈도를 고려한 전자 칠판용 판서 소프트웨어의 동적 메뉴 배치)

  • Jeong, Si-Sik;Hwang, Min-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.906-909
    • /
    • 2015
  • The smart educational environment using the IWB(Interactive White Board) system has been built and developed since e-learning industry was developed significantly in the early 2000's. Basically the IWB system includes the board writing software, and instructors can further increase the training effect by handwriting on the IWB. In this paper we propose new menu layout mechanism of board writing software that only a few menu buttons are displayed based on the frequency of menu usage and the position of menu layout is dynamically moved according to user's writing position. The implementation of our proposed mechanism shows that it is simple and easy to use without user's unnecessary movement. Therefore it is expected to contribute greatly to the development of a future smart education.

  • PDF

Kinematic Optimization and Experiment on Power Train for Flapping Wing Micro Air Vehicle (날갯짓 초소형 비행체의 끈을 이용한 동력 전달 장치에 대한 기구학적 최적화 및 실험)

  • Gong, Du-Hyun;Shin, Sang-Joon;Kim, Sang-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.289-296
    • /
    • 2017
  • In this paper, geometrical optimization for newly designed flapping mechanism for insect-like micro air vehicle is presented. The mechanism uses strings to convert rotation of motor to reciprocating wing motion to reduce the total weight and inertial force. The governing algorithm of movement of the mechanism is established considering the characteristic of string that only tensile force can be acted by string, to optimize the kinematics. Modified pattern search method which is complemented to avoid converging into local optimum is adopted to the geometrical optimization of the mechanism. Then, prototype of the optimized geometry is produced and experimented to check the feasibility of the mechanism and the optimization method. The results from optimization and experiment shows good agreement in flapping amplitude and other wing kinematics. Further research will be conducted on dynamic analysis of the mechanism and detailed specification of the prototype.

Ground-Structure Seismic Interaction-Induced Rocking Behavior and the Uplift Behavior of Underground Hollow Structure (지반-구조물 동적 상호작용에 의한 Rocking현상과 그에 따른 지하 중공구조물의 부상거동)

  • Kang, Gi-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.85-94
    • /
    • 2012
  • This paper described a centrifuge study in order to investigate ground-underground hollow structure interaction-induced rocking behavior in liquefied ground. Uplift of the underground hollow structures is initiated due to liquefaction in sandy grounds when the ground is exposed to a strong shaking during earthquakes because the apparent unit weight of these structures is smaller than that of the liquefied soil. In order to evaluate the dynamic behavior of the underground hollow structure and the effects of original subsoil during the uplifting, model tests were performed by changing the relative density of the original subsoil and installing an acrylic box as a trench. The results of the present study show that rocking behavior of the underground hollow structure due to shear deformation of the surrounding subsoil or lateral movement from the original subsoil contributed to large magnitude of the uplift due to strong shaking.

Flow-conditioning of a subsonic wind tunnel to model boundary layer flows

  • Ghazal, Tarek;Chen, Jiaxiang;Aboutabikh, Moustafa;Aboshosha, Haitham;Elgamal, Sameh
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.339-366
    • /
    • 2020
  • This study aims at modeling boundary layers (BLs) encountered in sparse and built environments (i.e. open, suburban and urban) at the subsonic Wind Tunnel (WT) at Ryerson University (RU). This WT has an insignificant turbulence intensity and requires a flow-conditioning system consisting of turbulence generating elements (i.e., spires, roughness blocks, barriers) to achieve proper turbulent characteristics. This system was developed and validated in the current study in three phases. In phase I, several Computational Fluid Dynamic (CFD) simulations of the tunnel with generating elements were conducted to understand the effect of each element on the flow. This led to a preliminary design of the system, in which horizontal barriers (slats) are added to the spires to introduce turbulence at higher levels of the tunnel. This design was revisited in phase II, to specify slat dimensions leading to target BLs encountered by tall buildings. It was found that rougher BLs require deeper slats and, therefore, two-layer slats (one fixed and one movable) were implemented to provide the required range of slat depth to model most BLs. This system only involves slat movement to change the BL, which is very useful for automatic wind tunnel testing of tall buildings. The system was validated in phase III by conducting experimental wind tunnel testingof the system and comparing the resulting flow field with the target BL fields considering two length scales typically used for wind tunnel testing. A very good match was obtained for all wind field characteristics which confirms accuracy of the system.

Effect of a Elderly Walker on Joint Kinematics and Muscle Activities of Lower Extremities Using a Human Model (인체 모델을 이용한 노인 보행기의 하지관절 기구학과 근활성에 미치는 영향)

  • Shin, Jun-Ho;Kim, Yoon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1243-1248
    • /
    • 2011
  • The purposes of this study were to develop a dynamic model of a human and to investigate the effect of a walker on an elderly subject's motions, such as sit-to-stand (STS) motion and normal gait, by using this model. A human model consisting of 15 segments and 14 joints was developed, embedded in $RecurDyn^{TM}$, and connected through a Simulink$^{(R)}$ interface with collected motion data. The model was validated by comparisons between joint kinematic results from inverse dynamics (Matlab$^{(R)}$-based in-house program) and from $RecurDyn^{TM}$ simulation during walking. The results indicate that the elderly walker induced a longer movement time in walking, such that the speed of joint flexion/extension was slower than that during a normal gait. The results showed that the muscle activities of parts of the ankle and hamstring were altered by use of the elderly walker. The technique used in this study could be very helpful in applications to biomechanical fields.

Optimal Neighbor Scope-Based Location Registration Scheme in Mobile IP Networks (이동 IP 망에서의 최적 이웃 스코프 값 기반의 위치 등록 방법)

  • Suh, Bong-Sue
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.139-144
    • /
    • 2007
  • The mobile terminal's frequent changes to the access point introduce significant network overhead in mobile IP networks. To solve this problem, we introduce a hierarchical structure with consideration given to the dynamic value of neighbor scope in IP regional registration[1]. When a mobile terminal moves within the neighbor given by the scope value, it makes registration locally without registration with its home agent. We analyze the algorithm mathematically and show the numerical results. As a result, optimization of the scope value for the localized registration under the hierarchical structure makes the proposed scheme outperform the standard mobile IP protocol[2]. This can be explained from the fact that there is only local registration for terminal's movement within the scope region. Moreover, as the signaling cost for home agent increases, the proposed scheme becomes more advantageous.

  • PDF

Effects of Therapeutic Climbing Training on the Balance and Gait Ability in Chronic Stroke Patients

  • Lee, Soin;Ko, Mingyun;Park, Seju
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.3
    • /
    • pp.2126-2134
    • /
    • 2020
  • Background: Therapeutic climbing training, which originated in Germany, is a wall-hanging rock climbing-based therapy to increase the body's coordination through movement of the upper and lower limbs against gravity. However, there are no studies examining the effectiveness of therapeutic climbing training to treat balance and gait ability in patients with chronic stroke. Objectives: To investigate therapeutic climbing training program on balance and gait in patients with chronic stroke. Design: Pretest-posttest control group design. Methods: Fourteen patients with chronic hemiplegic stroke participated. Participants were randomized into the therapeutic climbing training group (TCTG, n=7) and the standard rehabilitation program group (SRPG, n=7) group. All subjects participated in the same standard rehabilitation program consisting of 60 minutes 5 times a week for 6 weeks. TCTG participated additionally in the therapeutic climbing program consisting of 30 minutes sessions 3 times a week for the same 6 weeks. Berg balance scale (BBS), Gaitview Measure, Timed up and go test (TUG) were measured. Results: In the TCTG, revealed a statistical difference in BBS between the groups; in the difference of plantar pressure ratio in the static standing position revealed a statistical difference between the groups after training; the balance ability in the one-leg standing tests increased significantly; the time in TUG decreased significantly after training in both groups; The changes in the difference of dynamic plantar pressure ratio were reduced significantly in the TCTG. Conclusion: Therapeutic climbing training contribute to improve balance and walking function in patients with chronic stroke.

A Location Recognition and Notification Method of Attacker in Wireless Network Environment (모바일 환경에서의 공격자 위치 특정 및 알람 기법)

  • Bong, Jin-Sook;Park, Sang-Jin
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.201-211
    • /
    • 2017
  • Wireless network using dynamic IP and mobile IP technology provides the user with convenience of access and movement. However, this causes the attacker who disguises normal user(pretending to be a regular user) to have more opportunity in regard to access and acquisition of information. This paper help the network administrator and the service provider quickly to recognize the attacker's intention to access network and service. Therefore network administrator and service provider can specify and respond the location of the attacker appropriately. To achieve above, we define an entity (W_L_M) that manages user information of WiFi and LTE network, and propose messages and procedures for attacker's location identification and alarm. The performance evaluation of this paper is based on qualitative analysis. By using the proposed method, some cost (message creation, processing and transmission) occurred but it was analyzed to be less than the total network operation cost. The proposal of this paper is a management method that utilizes existing network information and structure. This method can be used as a reference material to enhance security.

The Effect of Abdominal Muscle Contraction Using Waist Circumference Change Sensors on Trunk Muscle Endurance and Postural Control in Healthcare Workers (허리둘레 변화 감지기를 이용한 복부수축이 보건의료 종사자의 몸통 근지구력과 자세조절에 미치는 효과)

  • Yu, Geun-Soo;Kim, Chang-Beom;Cho, In-Ho
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.451-461
    • /
    • 2019
  • Purpose: This study identified the effect of abdominal muscle contraction using changes in waist circumference for healthcare workers with back pain due to inadequate posture during working hours. Methods: In this study, we provided educational training focused on posture alignment and utilized waist circumference change sensors to induce the contraction of abdominal muscles as a method to address low back pain in healthcare workers. All 32 participants received the same training and then were assigned to two groups: wearing the keeping core band (CB) and not wearing the keeping core band (NCB). For the CB group, the waist circumference change sensor was applied for 6 weeks during working hours. Wilcoxon's signed-ranks test and paired t-tests were used to compare the differences between the groups. All statistical significance levels were set to α=0.05. Results: Trunk muscle endurance increased significantly in the CB group. There was no significant difference in stability index to evaluate static postural control, but active hip abduction tests, which evaluate dynamic postural control, showed significant decrease in the CB group. Conclusion: These results suggest that the induction of abdominal contraction using the waist circumference change sensor may improve the trunk muscle endurance and the postural control ability of the hip and pelvis of healthcare workers.

The Effect of Dual-task Gait Training on Balance, Gait, and Activities of Daily Living for Patients with Parkinson's Disease -A Single-subject Experimental Design- (이중과제 보행훈련이 파킨슨병 환자의 균형, 보행능력 및 일상생활동작에 미치는 효과 -단일사례연구-)

  • Park, Hyun-Ju;Lee, Eon-Ju;Na, Gyu-Min;Kang, Tae-Woo
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.339-351
    • /
    • 2019
  • Purpose: This study identified the effects of dual-task gait training on balance, gait function, and activity of daily living in patients with Parkinson's disease. Methods: This study used a single-subject design. Two patients with Parkinson's disease participated in this study. Dual-task gait training was performed 1 hour per day 8 times during intervention phase. The subjects were measured 8 times in the baseline phase, 8 times in the intervention phase, and 8 times in the follow-up phase. The outcome measurements included a timed up and go test (TUG), a Berg balance scale (BBS), a 10 meter walk test (10MWT), a 6 minute walk test (6MWT), a dynamic gait index (DGI) and a Korean modified Barthel index (K-MBI). Results: When compared to the average of the baseline process, the data collected during the intervention period showed that the TUG and 10MWT results improved and the tendency line was above the baseline. In addition, BBS, 6MWT, DGI, and K-MBI values for both patients increased remarkably after the training. Conclusion: The results of this study revealed that dual-task gait training may be helpful to improve balance, walking function, and activity of daily living for patients with Parkinson's disease. Further studies need to confirm our findings.