• Title/Summary/Keyword: dynamic mechanical

Search Result 5,403, Processing Time 0.033 seconds

Cure Behavior, Compression Set and Dynamic Mechanical Properties of EPDM/NBR Blend Vulcanizates (EPDM/NBR 블렌드 가황체의 가교 거동, 영구 압축 줄음율 및 동적 기계적 성질)

  • 박찬영
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.233-239
    • /
    • 2001
  • The ethylene propylene diene terpolymer (EPDM) blends with acrylonitrile butadiene rubber (NBR) were prepared by mechanical mixing method. Mooney viscosity, cure behaviors, compression set and dynamic mechanical properties were subsequently examined. Dynamic characteristics of the entire blends determined from a Rheovibron generally showed two glass transitions (T'$_{g}$s), -43$^{\circ}C$ and -4$^{\circ}C$ for NBR and EPDM, respectively. The tan $\delta$ peak monotonically shifted toward the higher temperature with increasing NBR content. It was also found that the optimum cure time was significantly decreased with loading of NBR.

  • PDF

An Analysis for Optimization of Rubber Granule Layer in Synthetic Surfaced Track using Response Surface Methodology (반응표면법을 이용한 육상트랙용 고무칩층의 최적설계에 관한 연구)

  • Kang, Ki-Weon;Lee, Seung-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.787-794
    • /
    • 2010
  • This paper aims to evaluate the effect of each material ingredient on mechanical and dynamic performance and to determine an optimal mixing condition of a rubber granule layer. To minimize the required number of tests, the test matrix was established by using the design of experiments (DOE). The tensile tests were then performed to identify the mechanical properties. Also, to evaluate the dynamic performance that the IAAF has required for athletics tracks for athletes' safety and balance, a series of impact tests were performed by using the so-called the "artificial athlete" machine. Finally, the response surface methodology was used to decide the optimal mixing conditions needed to achieve a high level of mechanical properties and dynamic performance.

Influence of Manufacturing Errors on the Dynamic Characteristics of Planetary Gear Systems

  • Cheon, Gill-Jeong;Park, Robert G. er
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.606-621
    • /
    • 2004
  • A dynamic analysis using a hybrid finite element method was performed to characterize the effects of a number of manufacturing errors on bearing forces and critical tooth stress in the elements of a planetary gear system. Some tolerance control guidelines for managing bearing forces and critical stress are deduced from the results. The carrier indexing error for the planet assembly and planet runout error are the most critical factors in reducing the planet bearing force and maximizing load sharing, as well as in reducing the critical stress.

Technology for Fatigue Life Prediction of Mechanical Components using Multibody Dynamics (다물체동력학을 이용한 기계 부품의 피로수명 예측 기술)

  • Han, Hyeong-Seok
    • 연구논문집
    • /
    • s.27
    • /
    • pp.47-55
    • /
    • 1997
  • Fatigue life prediction of mechanical components is necessary to develop new products, which is very expensive and time-consuming. This paper reviews technologies proposed for computation of dynamic stress in mechanical components. The methods based on multibody dynamics are considering more real operational conditions than other methods. The technology for fatigue life prediction without the prototype for experiment results in cost and time saving. This technology can be applied to design of various mechanical components like carbody.

  • PDF

Optimal Design and Development of Electromagnetic Linear Actuator for Mass Flow Controller

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.40-47
    • /
    • 2003
  • In this paper, we constructed the analytic model of control valve as a function of electric and geometric parameters, and analyzed the influence of the design parameters on the dynamic characteristics. For improving the dynamic characteristics, optimal design is conducted by applying sequential quadratic programming method to the analytic model. This optimal design aims to minimize the response time and maximize force efficiency. By this procedure, control valve can be designed to have fast response in motion.

Structure and Properties of Segmented Block Copolyetheresters Based on PBT and PTMGT. 2. Mechanical and Dynamic Mechanical Properties

  • Jeon, Byoung-Yeol;Baik, Doo-Hyun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.33-36
    • /
    • 1998
  • Segmented block copolyetheresters defined as copolymers having sequences of alternating polyester hard blocks and polyether soft blocks create labile physical cross-links upon crystallization of hard polyester blocks Since the nature of the physical interlocking is a crystallite formed exclusively from the crystallizable hard segment, the hard segment content (HSC) and hard segment length (HSL) will play an important role in determining the properties such as mechanical property and dynamic mechanical property. (omitted)

  • PDF

Dynamic visco-hyperelastic behavior of elastomeric hollow cylinder by developing a constitutive equation

  • Asgari, Masoud;Hashemi, Sanaz S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.601-619
    • /
    • 2016
  • In this study, developments of an efficient visco-hyperelastic constitutive equation for describing the time dependent material behavior accurately in dynamic and impact loading and finding related materials constants are considered. Based on proposed constitutive model, behaviour of a hollow cylinder elastomer bushing under different dynamic and impact loading conditions is studied. By implementing the developed visco-hyperelastic constitutive equation to LS-DYNA explicit dynamic finite element software a three dimensional model of the bushing is developed and dynamic behaviour of that in axial and torsional dynamic deformation modes are studied. Dynamic response and induced stress under different impact loadings which is rarely studied in previous researches have been also investigated. Effects of hyperelastic and visco-hyperelastic parameters on deformation and induced stresses as well as strain rate are considered.

Dynamic characteristics of the compressor-combined condenser system (압축기 계가 결합된 응축기의 동특성)

  • Kim, Jae-Dol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1001-1012
    • /
    • 1998
  • This paper reports the analysis of dynamic characteristics of air-cooled condenser. At first, there is an assumption that the superheated vapor flows into the condenser inlet. And in order to consider the effect of pressure change in the dynamic characteristics of the condenser the combined system of condenser and compressor was used. By using the equation of energy balance and the equation of mass balance, the basic equation for describing the dynamic characteristics of condenser can be derived. The transfer function for describing dynamic response of the condenser to flow rate change outlet can be obtained from using linearizations and Laplace transformations of the equation. From this transfer function, analytical investigation which affects the frequency responses of condenser has been made. Through this study, it became possible that the information about the dynamic characteristics of air-cooled condenser is offered. While the average heat transfer coefficient of the refrigerant side necessary for the theoretical calculation of the dynamic characteristics is given by calculation method for the tube length and pressure drop of air-cooled condenser.

Identification Method of the Dynamic Characteristics of Pre-deformed Elastomers (초기 변형이 있는 방진고무의 동특성 규명 방법)

  • Ahn, Tae-Kil;Kim, Kug-Weon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.918-922
    • /
    • 2003
  • Elastomers are extensively used in various machine design application, mainly for vibration/shock/noise control devices. However. there are still a lot of difficulties in designing the elastomeric components applied in complex shapes and under pre-deformed states. One of the most Influential factors related to mechanical properties of elastomers are pre- and dynamic strains. Consequently, a large number of experiments have to be conducted to identify dynamic properties of elastomers considering their combined effects. In this paper, we present an efficient experimental method to identify mechanical properties of elastomers considering effects of pre- and dynamic strains. This method is capable of predicting the dynamic characteristics of elastomers under arbitrary strain states from reduced experimental data.

Experimental Techniques for Dynamic Mechanical Characteristics of Rock Materials (암석의 동역학적 특성 규명을 위한 실험기법의 분석)

  • Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.38 no.3
    • /
    • pp.30-43
    • /
    • 2020
  • Rock dynamics is a relatively new discipline to study the mechanical behaviors of rock materials (or rock masses) under dynamic loading conditions. Many rock mechanics and rock engineering issues are concerned with the dynamic phenomena such as mining development, civil engineering, earthquake, military science, and various disasters. The significance of rock dynamic researches has been increased in these days. This paper introduces conventional experimental techniques for rock dynamic experimental methods and the particular characteristics of rock dynamic behaviors with several remarkable recent studies.