• Title/Summary/Keyword: dynamic interaction of vehicle-bridge

Search Result 94, Processing Time 0.029 seconds

The Dynamic Interaction Analysis of Actively Controlled Maglev and Guideway Bridge Systems (능동제어를 고려한 자기부상열차와 가이드웨이 교량의 동적상호작용 해석)

  • Lee, Jun-Seok;Kwon, Soon-Duck;Yeo, In-Ho;Kim, Moon-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.523-533
    • /
    • 2009
  • The purpose of the present study is to examine the dynamic interaction characteristics between moving maglev vehicle and guideway bridge system. For this purpose, the dynamic governing equation of 2-dof maglev vehicle using optimal feedback control scheme of LQG was derived with or without consideration of the dynamic interaction between vehicle and guideway bridge system. From the parametric study, it was found that the dynamic interaction effect between bridge and vehicle was large in case of neglecting the railway roughness effect. But if the railway roughness effect was considered, it was observed two analysis results with or without consideration of the dynamic interaction did not show big difference. As a conclusion, it is required to take into account the dynamic interaction effect of bridge and maglev vehicle and the railway roughness for precise evaluation of runnability of maglev vehicle and impact factor of guideway.

Dynamic response of integrated vehicle-bridge-foundation system under train loads and oblique incident seismic P waves

  • Xinjun Gao;Huijie Wang;Fei Feng;Jianbo Wang
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.149-162
    • /
    • 2024
  • Aiming at the current research on the dynamic response analysis of the vehicle-bridge system under earthquake, which fails to comprehensively consider the impact of seismic wave incidence angles, terrain effects and soil-structure dynamic interaction on the bridge structure, this paper proposes a multi-point excitation input method that can consider the oblique incidence seismic P Waves based on the viscous-spring artificial boundary theory, and verifies the accuracy and feasibility of the input method. An overall numerical model of vehicle-bridge-soil foundation system in valley terrain during oblique incidence of seismic P-wave is established, and the effects of seismic wave incidence characteristics, terrain effects, soil-structure dynamic interactions, and vehicle speeds on the dynamic response of the bridge are analyzed. The research results indicate that with an increase in P wave incident angle, the vertical dynamic response of the bridge structure decreased while the horizontal dynamic response increased significantly. Traditional design methods which neglect multi-point excitation would lead to an unsafe structure. The dynamic response of the bridge structure significantly increases at the ridge while weakening at the valley. The dynamic response of bridge structures under earthquake action does not always increase with increasing train speed, but reaches a maximum value at a certain speed. Ignoring soil-structure dynamic interaction would reduce the vertical dynamic response of the bridge piers. The research results can provide a theoretical basis for the seismic design of vehicle-bridge systems in complex mountainous terrain under earthquake excitation.

Vibration analysis of CFST tied-arch bridge due to moving vehicles

  • Yang, Jian-Rong;Li, Jian-Zhong;Chen, Yong-Hong
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • Based on the Model Coupled Method (MCM), a case study has been carried out on a Concrete-Filled Steel Tubular (CFST) tied arch bridge to investigate the vibration problem. The mathematical model assumed a finite element representation of the bridge together with beam, shell, and link elements, and the vehicle simulation employed a three dimensional linear vehicle model with seven independent degrees-of-freedom. A well-known power spectral density of road pavement profiles defined the road surface roughness for Perfect, Good and Poor roads respectively. In virtue of a home-code program, the dynamic interaction between the bridge and vehicle model was simulated, and the dynamic amplification factors were computed for displacement and internal force. The impact effects of the vehicle on different bridge members and the influencing factors were studied. Meanwhile the acceleration responses of some of the components were analyzed in the frequency domain. From the results some valuable conclusions have been drawn.

Variation of modal parameters of bridges due to vehicle-bridge interaction (차량-교량 상호작용에 의한 교량 모달 특성의 변화)

  • 권순덕;김철영;장승필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.420-423
    • /
    • 2003
  • This paper addresses the results of experimental and analytical study on the effects of dynamic interaction between vehicle and bridge on modal properties of bridge. Based on ambient vibration test and vehicle impact test on a bridge, it is found that the natural frequencies of bridge are varied by vehicle passing. Analytical studies for the effects of vehicle position, speed, damping, mass ratio and frequency ratio on bridge-vehicle interaction are carried out using complex eigenvalue analysis and numerical integration in time domain. The results show that vehicle properties except speed cause significant change of natural frequency as well as damping of bridge.

  • PDF

Vehicle/bridge interactions of a rail suspension bridge considering support movements

  • Yau, J.D.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.263-276
    • /
    • 2009
  • This paper is intended to investigate interaction response of a train running over a suspension bridge undergoing support settlements. The suspension bridge is modeled as a single-span suspended beam with hinged ends and the train as successive moving oscillators with identical properties. To conduct this dynamic problem with non-homogeneous boundary conditions, this study first divides the total response of the suspended beam into two parts: the static and dynamic responses. Then, the coupled equations of motion for the suspended beam carrying multiple moving oscillators are transformed into a set of nonlinearly coupled generalized equations by Galerkin's method, and solved using the Newmark method with an incremental-iterative procedure including the three phases: predictor, corrector, and equilibrium-checking. Numerical investigations demonstrate that the present iterative technique is available in dealing with the dynamic interaction problem of vehicle/bridge coupling system and that the differential movements of bridge supports will significantly affect the dynamic response of the running vehicles but insignificant influence on the bridge response.

The Simulation and Experimental Study on the Bridge Response of AGT Bridge - Vehicle interaction System (AGT 시스템 교량-차량 상호작용에 의한 교량응답 시뮬레이션 및 실험)

  • Na, Sang-Ju;Kim, Ki-Bong;Song, Jae-Pil;Kim, Hyun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.395-400
    • /
    • 2007
  • LRT(Light Railway Train), which is a intermediate system of train and bus, is arose for the solution of subway construction cost and the transportation capacity of bus. LRT was introduced in 1980's. About 30 local governments are plan to introduce LRT or constructing LRT, at present. AGT(Automated Guide-way Transit) system, which is a kind of LRT, is operated without driver. Rubber wheeled AGT system can reduce the noise and vibration compare to steel wheeled AGT, so it is estimated as ideal transportation system for urban area. And live loads at bridge are classified as the static load of vehicle and the dynamic wheel contact load which is occurred from the interaction of bridge and vehicle vibration, and the surface roughness. In the case of AGT system, the dynamic increment factor of bridge is greater than the normal train bridge and roadway bridge, because, the weight of AGT vehicle is more light that the train of truck. The exact method for dynamic increment factor is experiment. But this method is needed much money and time, moreover, this method cannot be adopted in design. Therefore, a simulation program for the interaction of AGT bridge, vehicle and surface roughness was developed, in this study. And the program was verified by experiment. As a result, the accuracy of the simulation program can be verified.

  • PDF

A model for investigating vehicle-bridge interaction under high moving speed

  • Liu, Hanyun;Yu, Zhiwu;Guo, Wei;Han, Yan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.627-635
    • /
    • 2021
  • The speed of rail vehicles become higher and higher over two decades, and China has unveiled a prototype high-speed train in October 2020 that has been able to reach 400 km/h. At such high speeds, wheel-rail force items that had previously been ignored in common computational model should be reevaluated and reconsidered. Aiming at this problem, a new model for investigating the vehicle-bridge interaction at high moving speed is proposed. Comparing with the common model, the new model was more accurate and applicable, because it additionally considers the second-order pseudo-inertia forces effect and its modeling equilibrium position was based on the initial deformed curve of bridge, which could include the influences of temperature, pre-camber, shrinkage and creep deformation, and pier uneven settlement, etc. Taking 5 km/h as the speed interval, the dynamic responses of the classical vehicle-bridge system in the speed range of 5 km/h to 400 km/h are studied. The results show that ignoring the second-order pseudo-inertia force will underestimate the dynamic response of vehicle-bridge system and make the high-speed railway bridge structure design unsafe.

Dynamic Evaluation of Bridge Mounted Structures (교량상부에 부착된 구조물의 동적거동해석)

  • Kim, Dong-Joo;Lee, Wan-Soo;Yang, Jong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.324-327
    • /
    • 2011
  • The design requirement for ground mounted sign structures are fairly well defined in the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries, and Traffic Signals and consists of applying an equivalent pseudo-dynamic loading to account for the dynamic effects of wind loads and ignores the dynamic effect due to moving vehicle loads. This design approach, however, should not be applied to the design of bridge mounted sign structures because ignoring the dynamic effects of the moving vehicle loads may produce non-conservative results, since the stiffness of the bridge structure can greatly influence the behavior. Not enough information is available in the literatures which provide guide lines to include the influence of moving vehicles in the design of the bridge mounted sign structures. This paper describes a theoretical methodology, Bridge-Vehicle Interaction Element, which can be utilized to account for the dynamic effect of moving vehicles. A case study is also included where this methodology was successfully applied. It was concluded that the bridge-vehicle interaction finite element developed can provide a more accurate representation of the behavior of bridge mounted sign structures. The result of these analysis enabled development of simple and effective retrofitting scheme for the existing support system of bridge-mounted-structure.

  • PDF

Formulation of Dynamic Vehicle-Bridge Interaction Problems

  • Yi, Gyu-Sei
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.97-116
    • /
    • 2002
  • In this papers, a finite element formulation is proposed for dynamic analysis of vehicle-bridge interaction problems under realistic loading conditions. Although the formulation presented in this paper is based on the consideration of only a single traversing vehicle, it can be extended to include several different bridge configurations. The traversing vehicle and the vibrating bridge superstructure are considered as an integrated system. Hence, although material and geometric nonlinearities are excluded, this introduces nonlinearity into the problem. Various vehicle models, including those with suspension systems, are considered. Traveling speed of the vehicle can be varied. The finite element discretization of the bridge structure permits the inclusion of arbitrary geometrical configurations, and surface and boundary conditions. To obtain accurate solutions, time integration of the equation of vehicle-bridge motion is carried out by using the Newmark method in connection with a predictor-corrector algorithm.

Nonlinear Dynamic Analysis of Vehicle-Bridge Interaction considering the Hertzian Contact Spring and Rail Irregularities (헤르쯔 접촉스프링과 레일 요철을 고려한 차량-교량 동적상호작용 비선형 해석)

  • Kang, Young-Jong;Neuyen, Van-Ban;Kim, Jung-Hun;Kang, Yoon-Suk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1478-1485
    • /
    • 2010
  • In this paper, the nonlinear dynamic response of Vehicle-Bridge interaction with the coupled equations of motion including nonlinear Hertzian contact is presented. The moving train model is chosen to have 10 degrees of freedom (DOF). The bridge is modeled as 2D Euler-Bernoulli beam element with 4 DOF for each element, two for rotations and another two for translations. The nonlinear Hertzian contact is used to simulate the interaction between vehicle and bridge. Base on the relationship of wheel displacement of the vehicle and the vertical displacement of the bridge in Hertzian contact, the coupled equations of motion of the whole system is derived. The convenient formulation was encoded into a computer program. The contact forces, contact area and stress of the rail surface were also computed. The accuracy and efficiency of the proposed program are verified and compared with exact analytical solution and other previous studies. Various numerical examples and parametric studies have demonstrated the versatility and applicability of the proposed program.

  • PDF