• Title/Summary/Keyword: dynamic geometry system

Search Result 130, Processing Time 0.026 seconds

A Computational Modeling Reflecting Static and Dynamic Characteristics of LM Bearings for Machine Tools (공작기계 LM 베어링의 정동적 특성을 반영하는 전산 모델링)

  • Kim, Hye-Yeon;Jeong, Jong-Kyu;Won, Jong-Jin;Jeong, Jay-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1062-1069
    • /
    • 2012
  • This paper suggests a computational modeling to reflect static/dynamic characteristics of LM bearings. A theoretical study for modeling LM bearings is elucidated by using the Hertz contact theory, the Lagrange's equation of motion, normal mode analysis and a calculation of equivalent moment center. The complex geometry of LM bearings is replaced by a simplified model with eight springs only. The suggested model reflects static and dynamic characteristics of LM bearings without any consideration for the shape of the bed or stages on the LM bearings. The modal experimental results are compared to the simulation results with the suggested computational modeling. The difference between the experiments and simulation is calculated less than 8%.

Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.19-36
    • /
    • 2014
  • This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a support system. These systems require careful consideration in their dynamic analysis modeling because they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent gyroscopic effects. Because of this complex geometry, the finite element model under consideration may have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to complete within a practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram analysis, while maintaining accuracy comparable to that of the original systems.

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.

Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

  • Kim, Chang-S.;Lim, Hak-Soo;Yoon, Jong-Joo;Chu, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.72-95
    • /
    • 2004
  • The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.

Measurement of Dynamic Characteristics on Structure using Non-marker Vision-based Displacement Measurement System (비마커 영상기반 변위계측 시스템을 이용한 구조물의 동특성 측정)

  • Choi, Insub;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.301-308
    • /
    • 2016
  • In this study, a novel method referred as non-marker vision-based displacement measuring system(NVDMS) was introduced in order to measure the displacement of structure. There are two distinct differences between proposed NVDMS and existing vision-based displacement measuring system(VDMS). First, the NVDMS extracts the pixel coordinates of the structure using a feature point not a marker. Second, in the NVDMS, the scaling factor in order to convert the coordinates of a feature points from pixel value to physical value can be calculated by using the external conditions between the camera and the structure, which are distance, angle, and focal length, while the scaling factor for VDMS can be calculated by using the geometry of marker. The free vibration test using the three-stories scale model was conducted in order to analyze the reliability of the displacement data obtained from the NVDMS by comparing the reference data obtained from laser displacement sensor(LDS), and the measurement of dynamic characteristics was proceed using the displacement data. The NVDMS can accurately measure the dynamic displacement of the structure without the marker, and the high reliability of the dynamic characteristics obtained from the NVDMS are secured.

Development of the 3D parametric modeling system for transmission gears of tractor (트랙터 변속장치 기어의 3차원 파라매트릭 설계 및 분석)

  • 유우식;김성균
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.57
    • /
    • pp.87-92
    • /
    • 2000
  • This paper describes a three dimensional parametric modeling system for transmission gears of tractor. In conventional design and manufacturing, information about three dimensional shapes has been described in engineering drawings. However drawing based design presents several problems; 1) communication errors between the designer and the modeller or manufacturer. 2) time taken and costs incurred in the design process. To solve these problems the system of parametric design based modeling has been proposed. Developed system in this paper consists of four steps; 1) parametric design of transmission gears with a solid modeler. 2) evaluation of gear geometry and strength. 3) dynamic simulation for gear interference check. 4) gear stress analysis with a CAE software. The proposed system has been tested in the fields and found to be a useful system.

  • PDF

Development of an Air Supply System in 250 kW MCFC Fuel Cell System (250kW급 MCFC 연료전지 시스템용 공기공급장치 개발)

  • Park, Jung-Young;Hwang, Soon-Chan;Park, Moo-Ryong;Kim, Young-Chul;Ahn, Kook-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.280-283
    • /
    • 2008
  • This study is concerned with development of air supply system in 250kW MCFC fuel cell system. The turbo blower is decided as an air supply system to increase the efficiency of fuel cell system. The turbo blower consists of an impeller, two vaneless diffuser, a vaned diffuser and a volute. The cascade diffuser is used to raise the efficiency of turbo blower. An aerodynamic design was done by applying the repeating design procedure including a meanline design, a 3D geometry generation and fluid dynamic calculation. It is confirmed from meanline and 3D flow analysis results that the operating range is enough and design requirements are successfully achieved. The performance test results were also included in this paper.

  • PDF

A Study on the Factors that Influence Jack Knife Phenomenon of Articulated Vehicles (연결(連結) 차량(車輛)의 재크나이프 현상에 영향(影響)을 미치는 인자(因子)인자에 대한 연구)

  • Kang, D.M.;Ahn, S.M.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.58-63
    • /
    • 2007
  • Vehicular safety and occupant injury have been of considerable interest to the public. The dynamic response of an articulated vehicle is different from that of single body vehicle due to its geometric and inertia properties. Articulated vehicles have the tendency to jackknife if they lose driving safety. Influence of factors for driving safety of an articulated vehicle(Tractor-Semitrailers) has been analysed by the EDVTS, a kinetic analysis program for an articulated vehicle. EDVTS permits an analyst to investigate the effect of many variables in a short period of time, and enables to obtain an accurate explanation of driving safety. The factors used in the analysis include the load, friction coefficient, tire flat, increase of braking force, and trailer geometry. Based on the results, the articulation angle and driving safety were influenced remarkably by the load, coefficient of friction, increase of braking force. However, trailer geometry, such as length and width, did not affect articulation angle and driving safety

  • PDF

A Study on the Tool for Dynamic Analysis of the Test Support system using Wind Tunnel Testing (풍동시험에서 사용하는 시험지지부의 동특성 해석용 툴에 관한 연구)

  • Park Tae-Min;Lee Kee-Seok;Hong Jun-Hee
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.370-376
    • /
    • 2005
  • This paper is described the program algorithm which can easily estimate dynamics of test support system by using mathematica tool based on the finite element method. We can determine the geometry, dimensions of the test support system, through tool stated in this paper for a certain test conditions. As a result of computer simulation and manufactured test support system's experiment in oder to verify suggested program, the dynamics of the test support system was well correspondent each other.

  • PDF