• 제목/요약/키워드: dynamic fuzzy control

검색결과 492건 처리시간 0.028초

로봇 관절의 백래쉬 보상을 위한 퍼지 제어기 설계 (A Fuzzy Controller Design for Compensating Backlash at Robot Joint)

  • 안원기;김병륜;김진환;허욱렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.192-194
    • /
    • 2006
  • Backlash between meshing gear teeth causes impact, tracking error and undesired vibrations. It is usually minimized by precision gear, spring-loaded anti-backlash gears and precise mechanical adjustment. Although these techniques can help to reduce the backlash gap, its cost is relatively high and performance is limited. And the classic controller is insufficient to control the dynamic system with nonlinearity. For these reason, a fuzzy controller is proposed to compensate the backlash effect at a robot system. The input variables are position error and change in error. The output variable can be defined by input voltage of motor. The performance of a fuzzy controller is verified by comparing with a PID controller. The results show that the undesired vibration is suppressed. And then diminishing the position error is observed.

  • PDF

Experimental validation of a dynamic analysis and fuzzy logic controller of greenhouse air temperature

  • Hamad, Imen Haj;Chouchaine, Amine;Bouzaouache, Hajer
    • International Journal of Computer Science & Network Security
    • /
    • 제21권5호
    • /
    • pp.175-182
    • /
    • 2021
  • The greenhouse is a complex system. It is subject to multiple input disturbances that are highly dependent on meteorological conditions, which are generally nonlinear and have a great influence on the agricultural production. The objective of this paper is to study the fuzzy logic technique as one of the most efficient technologies to control the greenhouse. The fuzzy logic controller (FLC) was developed to activate the actuator based on a ventilator was installed in an experimental greenhouse to obtain a desired temperature of the microclimate despite the externals disturbances.

Self-Organization of Fuzzy Rule Base Using Genetic Algorithm

  • Park, Sae-Hie;Kim, Yong-Ho;Choi, Young-Keel;Cho, Hyun-Chan;Jeon, Hong-Tae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.881-886
    • /
    • 1993
  • Fuzzy logic rule-based controller has many desirable advantages, which are simple to implement on the real time and need not the information of structure and dynamic characteristics of the system. Thus, nowadays, the scope of the application of the fuzzy logic controller becomes enlarged. But, if the controlled plant is a time-varying and nonlinear system, it is not easy to construct the fuzzy logic rules which usually need the knowledge of an expert. In this paper, an approach in which the logic control rules can be self-organized using genetic algorithm will be proposed and the effectiveness of the proposed method will be verified by computer simulation of the 2 d.o.f. planar robot manipulator.

  • PDF

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.

복합 모드형 ER엔진마운트의 성능평가 (II) - HILL를 통한 성능 평가 - (Performance Evaluation of a Mixed-Mode Type ER Engine Mount(II)-Performance Evaluation Via HILS-)

  • 최영태;최승복
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2151-2158
    • /
    • 2000
  • This paper presents vibration control performance of a passenger vehicle installed with the mixed-mode type ER engine mounts. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, a dynamic model of a vehicle featuring the ER engine mounts is formulated by taking into account the engine excitation forces. A new type of the fuzzy skyhook controller is then established in order to control both engine and body vibrations. This is accomplished by adopting a weighting parameter between two performance criteria which is to be determined from the fuzzy algorithm. Vertical displacement and acceleration of the engine mount obtained from the HILS method are provided in the frequency domain. In addition, vibration control performance between the conventional hydraulic engine mount and the proposed engine mount is compared in the time and frequency domains.

바람직한 제어 방향의 학습을 통한 퍼지 제어기의 자기 구성방법 (A Method of Self-Organizing for Fuzzy Logic Controller Through Learning of the Proper Directioin of Control)

  • 이연정;최봉열
    • 한국지능시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.21-33
    • /
    • 1997
  • 본 논문에서는 바람직한 제어 방향의 학습을 통한 퍼지 제어기의 새로운 자기 구성 방법을 제안한다. 기울기 강하법에 기반하여 특성을 모르는 동적 플랜트에 대한 퍼지 제어기를 자기 구성할 때 풀어야할 문제중 하나는 오차를 줄이도록 하는 바람직한 제어입력의 변화방향을 알아내는 것이다. 이 문제를 해결하기 위한 방법으로서, 제어입력에 따른 오차의 변화 방향에 대한 대표 값을 분할된 상태영역에 할당하고, 반복적인 시행을 통해 강화 학습된 이 대표값을 이용하여 퍼지 제어 규칙을 학습하는 방법을 제안하였다. 제안된 자기구성 퍼지제어기는 간단한 구조를 가질 뿐 아니라 설계하기도 쉬운 장점을 갖는다. 제안된 방법의 타당성은 역진자 시스템에 대한 모의 실험을 통하여 검증하였다.

  • PDF

퍼지 적응 법칙을 갖는 기준모델 적응제어기 설계 (The Design of MRAC with Fuzzy Adaptation Law)

  • 조종훈;권혁진;서승현;문동욱;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.685-688
    • /
    • 1995
  • In this paper we proposed new scheme replacing adaptive mechanism part in MRAC by fuzzy logic in order to improve transient response in adaptive control system. Conventional adaptive control system has good performance in steady state but it has large error or problem with rise time in transient state. We need to increase adaptation gain of control variable but it causes robustness problem that makes ststem unstable for set-point, load-variation, and dynamic change. To demonstrate presented FTAC(fuzzy tunning adaptive control)'s superiority, presented method is introduced for a class of SISO systems and compare with MRAC. By analyzing simulation result, we can see transient response is improved and the system is not affected by disturbance in proposed method in comparison to MRAC.

  • PDF

A Novel Efficiency Optimization Strategy of IPMSM for Pump Applications

  • Zhou, Guangxu;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.515-520
    • /
    • 2009
  • According to the operating characteristics of pump applications, they should exhibit high efficiency and energy saving capabilities throughout the whole operating process. A novel efficiency optimization control strategy is presented here to meet the high efficiency demand of a variable speed Permanent Magnet Synchronous Motor (PMSM). The core of this strategy is the excellent integration of mended maximum torque to the current control algorithm, based on the losses model during the dynamic and the grade search method with changed step by fuzzy logic during the steady. The performance experiments for the control system of a variable speed high efficiency PMSM have been completed. The test results verified that the system can reliably operate with a different control strategy during dynamic and steady operation, and the system exhibits better performance when using the efficiency-optimization control.

스마트 TMD의 지진응답 제어성능 실험적 검토 (Experimental Evaluation of Seismic Response Control Performance of Smart TMD)

  • 강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제22권3호
    • /
    • pp.49-56
    • /
    • 2022
  • Tuned mass damper (TMD) is widely used to reduce dynamic responses of structures subjected to earthquake loads. A smart tuned mass damper (STMD) was proposed to increase control performance of a traditional passive TMD. A lot of research was conducted to investigate the control performance of a STMD based on analytical method. Experimental study of evaluation of control performance of a STMD was not widely conducted to date. Therefore, seismic response reduction capacity of a STMD was experimentally investigated in this study. For this purpose, a STMD was manufactured using an MR (magnetorheological) damper. A simple structure presenting dynamic characteristics of spacial roof structure was made as a test structure. A STMD was made to control vertical responses of the test structure. Two artificial ground motions and a resonance harmonic load were selected as experimental seismic excitations. Shaking table test was conducted to evaluate control performance of a STMD. Control algorithms are one of main factors affect control performance of a STMD. In this study, a groundhook algorithm that is a traditional semi-active control algorithm was selected. And fuzzy logic controller (FLC) was used to control a STMD. The FLC was optimized by multi-objective genetic algorithm. The experimental results presented that the TMD can effectively reduce seismic responses of the example structures subjected to various excitations. It was also experimentally shown that the STMD can more effectively reduce seismic responses of the example structures conpared to the passive TMD.

퍼지를 이용한 자율 이동 로봇의 이동 경로 추종 및 고속 정밀 제어 (Moving Path following and High Speed Precision Control of Autonomous Mobile Robot Using Fuzzy)

  • 이원호;이형우;김상헌;정재영;노태정
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.907-913
    • /
    • 2004
  • 일반적인 이동 로봇의 주된 관심은 경로 생성과 생성된 경로 추종에 있다. 그러나 일부 고속의 이동성이 필요로 하는 로봇의 경우 동역학적 제한 조건이 존재하며, 이러한 제한 조건 내에서 원하는 움직임에 대한 제어가 요구된다. 된 논문에서 환경 지도를 가지고 있지 않은 상태, 즉 미지의 환경에서 이동 로봇의 경로 추종에 있어서 빠른 이동시에 발생할 수 있는 이동 로봇의 미끄러짐이나 전복 현상을 막기 위해 이동 로봇의 동역학적 제한 조건을 퍼지 논리를 이용하여 기준 속도를 변화시켜 안전하고 빠는 경로 추종 성능을 얻고자 하였다. 특히, 라인 추종 이동 로봇을 모델링하여 실시간으로 변화하는 목표점에 대한 추종 제어기를 설계하고 퍼지 최적 속도 제한 제어기를 통해 연속적으로 변화하는 라인에 대해서 지능적으로 로봇의 속도를 제한하여 안정적인 추종 성능을 발휘함을 확인하였다.