• Title/Summary/Keyword: dynamic finite element analysis

Search Result 2,350, Processing Time 0.03 seconds

A Comparative Study on Elastic-Plastic -Dynamci Analysis of Sheet Metal Forming (탄소성 동적해석시 해에 미치는 여러 인자들의 비교연구)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.245-248
    • /
    • 1999
  • Explicit dynamic finite element analysis has been used widely in the field of sheet metal forming. However in using the analysis technique there are some parameters which are not clearly defined so that engineers may obtain inaccurate solutions In the present study parameters such as time step damping ratio penalty constant and punch speed were investigated on their influence to the solution behavior. Considered forming processes are plane stain bending by a punch and axisymmetric deep drawing.

  • PDF

Finite element analysis for longitudinal vibration of nanorods based on doublet mechanics

  • Ufuk Gul;Metin Aydogdu
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.411-422
    • /
    • 2023
  • In the present study, the axial vibration of the nanorods is investigated in the framework of the doublet mechanics theory. The equations of motion and boundary conditions of nanorods are derived by applying the Hamilton principle. A finite element method is developed to obtain the vibration frequencies of nanorods for different boundary conditions. A two-noded higher order rod finite element is used to solve the vibration problem. The natural frequencies of nanorods obtained with the present finite element analysis are validated by comparing the results of classical doublet mechanics and nonlocal strain gradient theories. The effects of rod length, mode number and boundary conditions on the axial vibration frequencies of nanorods are examined in detail. Mode shapes of the nanorods are presented for the different boundary conditions. It is shown that the doublet mechanics model can be used for the dynamic analysis of nanotubes, and the presented finite element formulation can be used for mechanical problems of rods with unavailable analytical solutions. These new results can also be used as references for the future studies.

Efficient Adaptive Finite Element Mesh Generation for Dynamics (동적 문제에 효율적인 적응적 유한요소망)

  • Yoon, Chongyul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.385-392
    • /
    • 2013
  • The finite element method has become the most widely used method of structural analysis and recently, the method has often been applied to complex dynamic and nonlinear structural analyses problems. Even for these complex problems, where the responses are hard to predict, finite element analyses yield reliable results if appropriate element types and meshes are used. However, the dynamic and nonlinear behaviors of a structure often include large deformations in various portions of the structure and if the same mesh is used throughout the analysis, some elements may deform to shapes beyond the reliable limits; thus dynamically adapting finite element meshes are needed in order for the finite element analyses to be accurate. In addition, to satisfy the users requirement of quick real run time of finite element programs, the algorithms must be computationally efficient. This paper presents an adaptive finite element mesh generation scheme for dynamic analyses of structures that may adapt at each time step. Representative strain values are used for error estimates and combinations of the h-method(node movement) and the r-method(element division) are used for mesh refinements. A coefficient that depends on the shape of an element is used to limit overly distorted elements. A simple frame example shows the accuracy and computational efficiency of the scheme. The aim of the study is to outline the adaptive scheme and to demonstrate the potential use in general finite element analyses of dynamic and nonlinear structural problems commonly encountered.

Ambient vibration based structural evaluation of reinforced concrete building model

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.335-350
    • /
    • 2018
  • This paper presents numerical modelling, modal testing, finite element model updating, linear and nonlinear earthquake behavior of a reinforced concrete building model. A 1/2 geometrically scale, two-storey, reinforced concrete frame model with raft base were constructed, tested and analyzed. Modal testing on the model using ambient vibrations is performed to illustrate the dynamic characteristics experimentally. Finite element model of the structure is developed by ANSYS software and dynamic characteristics such as natural frequencies, mode shapes and damping ratios are calculated numerically. The enhanced frequency domain decomposition method and the stochastic subspace identification method are used for identifying dynamic characteristics experimentally and such values are used to update the finite element models. Different parameters of the model are calibrated using manual tuning process to minimize the differences between the numerically calculated and experimentally measured dynamic characteristics. The maximum difference between the measured and numerically calculated frequencies is reduced from 28.47% to 4.75% with the model updating. To determine the effects of the finite element model updating on the earthquake behavior, linear and nonlinear earthquake analyses are performed using 1992 Erzincan earthquake record, before and after model updating. After model updating, the maximum differences in the displacements and stresses were obtained as 29% and 25% for the linear earthquake analysis and 28% and 47% for the nonlinear earthquake analysis compared with that obtained from initial earthquake results before model updating. These differences state that finite element model updating provides a significant influence on linear and especially nonlinear earthquake behavior of buildings.

Manual model updating of highway bridges under operational condition

  • Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • Finite element model updating is very effective procedure to determine the uncertainty parameters in structural model and minimize the differences between experimentally and numerically identified dynamic characteristics. This procedure can be practiced with manual and automatic model updating procedures. The manual model updating involves manual changes of geometry and analyses parameters by trial and error, guided by engineering judgement. Besides, the automated updating is performed by constructing a series of loops based on optimization procedures. This paper addresses the ambient vibration based finite element model updating of long span reinforced concrete highway bridges using manual model updating procedure. Birecik Highway Bridge located on the $81^{st}km$ of Şanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The structural carrier system of the bridge consists of two main parts: Arch and Beam Compartments. In this part of the paper, the arch compartment is investigated. Three dimensional finite element model of the arch compartment of the bridge is constructed using SAP2000 software to determine the dynamic characteristics, numerically. Operational Modal Analysis method is used to extract dynamic characteristics using Enhanced Frequency Domain Decomposition method. Numerically and experimentally identified dynamic characteristics are compared with each other and finite element model of the arch compartment of the bridge is updated manually by changing some uncertain parameters such as section properties, damages, boundary conditions and material properties to reduce the difference between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %49.1 to %0.6 by model updating. Also, a good harmony is found between mode shapes after finite element model updating.

A study on the Modeling and Dynamic Analysis of Cracked Beam Structures (균열이 있는 보의 모델링 및 동적 해석에 관한 연구)

  • 홍성욱;김만달;이종원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.197-204
    • /
    • 2003
  • This paper presents an efficient modeling and dynamic analysis method for open cracked beam structures. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed method adopts the exact dynamic element method (EDEM) to avoid the inconvenience and numerical errors in association with re-meshing the structural model with the crack position changed. The proposed modeling method is validated through a series of simulation and experiments. First, the proposed method is rigorously compared with a commercial finite element code. Then, two kinds of experiments are performed to validate the proposed modeling method. Finally, a diagnostic scheme fur open cracked beam structures is proposed and demonstrated through a numerical example.

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

Probabilistic Structural Safety Assessment Considering the Initial Shape and Non-linearity of Steel Cable-Stayed Bridges (강사장교의 초기형상과 비선형성을 고려한 확률론적 구조안전성 평가)

  • Bang, Myung-Seok;Han, Sung-Ho;Lee, Woo-Sang;Lee, Chin-Ok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In this study, the advanced numerical algorithm is developed which can performed the static and dynamic stochastic finite element analysis by considering the effect of uncertainties included in the member stiffness of steel cable-stayed bridges and seismic load. After conducting the linear and nonlinear initial shape analysis, the advanced numerical algorithm is the assessment tool which can performed structural the response analysis considering the static linearity and non-linearity of before or after induced intial tensile force, and examined the reliability assessment more efficiently. The verification of the developed numerical algorithm is evaluated by analyzing the regression analysis and coefficient of correlation using the direct monte carlo simulation. Also, the dynamic response characteristic and coefficient of variation of the steel cable-stayed bridge is calculated by considering the uncertainty of random variables using the developed numerical algorithm. In addition, the quantitative structural safety of the steel cable-stayed bridges is evaluated by conducting the reliability assessment based upon the dynamic stochastic finite element analysis result.

Damped dynamic responses of a layered functionally graded thick beam under a pulse load

  • Asiri, Saeed A.;Akbas, Seref D.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.713-722
    • /
    • 2020
  • This article aims to illustrate the damped dynamic responses of layered functionally graded (FG) thick 2D beam under dynamic pulse sinusoidal load by using finite element method, for the first time. To investigate the response of thick beam accurately, two-dimensional plane stress problem is assumed to describe the constitutive behavior of thick beam structure. The material is distributed gradually through the thickness of each layer by generalized power law function. The Kelvin-Voigt viscoelastic constitutive model is exploited to include the material internal damping effect. The governing equations are obtained by using Lagrange's equations and solved by using finite element method with twelve -node 2D plane element. The dynamic equation of motion is solved numerically by Newmark implicit time integration procedure. Numerical studies are presented to illustrate stacking sequence and material gradation index on the displacement-time response of cantilever beam structure. It is found that, the number of waves increases by increasing the graduation distribution parameter. The presented mathematical model is useful in analysis and design of nuclear, marine, vehicle and aerospace structures those manufactured from functionally graded materials (FGM).

Forced vibration of a functionally graded porous beam resting on viscoelastic foundation

  • Alnujaie, Ali;Akbas, Seref D.;Eltaher, Mohamed A.;Assie, Amr
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • This paper concerns with forced dynamic response of thick functionally graded (FG) beam resting on viscoelastic foundation including porosity impacts. The dynamic point load is proposed to be triangle point loads in time domain. In current analysis the beam is assumed to be thick, therefore, the two-dimensional plane stress constitutive equation is proposed to govern the stress-strain relationship through the thickness. The porosity and void included in constituent is described by three different distribution models through the beam thickness. The governing equations are obtained by using Lagrange's equations and solved by finite element method. In frame of finite element analysis, twelve-node 2D plane element is exploited to discretize the space domain of beam. In the solution of the dynamic problem, Newmark average acceleration method is used. In the numerical results, effects of porosity coefficient, porosity distribution and foundation parameters on the dynamic responses of functionally graded viscoelastic beam are presented and discussed. The current model is efficient in many applications used porous FGM, such as aerospace, nuclear, power plane sheller, and marine structures.