• Title/Summary/Keyword: dynamic feed error

Search Result 27, Processing Time 0.026 seconds

NC 선반의 동적이송오차에 관한 연구

  • 여인완;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.641-645
    • /
    • 1996
  • Ball screws are used in the feeding system for transmission of driving force. The friction effect between bed and table, which can affect in accuracyin one dimension feeding and describe the dynamic feeding error, could be simplified as a specific model through experiments. The experiments for dynamic feeding errors were performed om tje NC lathe eith a ball screw. The errors in feeding were measured with respect to the variances of feed, spindle speed and motor current for feeding. A rotary encoder and a current sensor were installed with NC lathe.

  • PDF

A Study on Algorithm of Checking Errors in Assembly Process of Feed Drive system in NC Machine Tools (NC공작기계 이송기구의 조립시 발생하는 결함의 발견)

  • Park, Jong-Bong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.141-147
    • /
    • 2001
  • This paper presents a developing algorithm of checking errors of feed mechanism in the NC machine tool with DAC method. It is useful to check static and dynamic rigidity with relation between lost motion and current of rotor. For checking error of feed in assembly tuning with machining center proposed checking algorithm is useful.

  • PDF

Development of Touch Probe Collision Avoidance Algorithm for OMM Using Offset Surface and Dynamic Error Compensation (OMM 에서 Offset Surface 를 이용한 접촉식 Probe 의 충돌회피 알고리즘 개발 및 동적 에러 보정)

  • 정석현;김동우;조명우;서태일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.323-326
    • /
    • 2004
  • In this study, the inspection path which is considered to free collision is generated by offset surface. When the inspection is executed, the consideration of machine dynamic error increases a precision. Dynamic error is measured on CNC machine bed changing of weight work price. Offset surface is safety space about collision. Because the danger of probe-collision is excluded in Offset surface, it is possible to rapid feed of probe and reduced inspection time. The Program which is possible to simulate using CAIP and is confirmed through actual experiment.

  • PDF

The Study on Automated Compensation of Thermal Deformation for High Speed Feed Drive System (고속이송계의 열변형오차 자동보정에 관한 연구)

  • 조성복;박성호;고해주;정윤교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.195-198
    • /
    • 2000
  • It can be acquired the high effective productivity through of high speed, precision of machine tools, and then, machine tools will be got a competitive power. Industrially advanced countries already developed that the high speed feed is 60m/min using the high speed ball screw. Also, a lot of problems have happened the feed drive system. It is necessary to study about the characteristics of thermal deformation played a more critical role than static stiffness and dynamic rigidity in controlling the level of machining accuracy. In spite of the improving the thermal deformation characteristics of machine tools at the design stage, there are always some residual errors that have to be compensated for during machining. In this study, thermal deformation error automated compensation device with multiple linear regression is proposed that thermal deformation error can be eliminated at the machining stage. The developed device has been practically applied to the feed drive unit.

  • PDF

Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks (신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어)

  • Oh, S.J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.286-286
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks (신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어)

  • Oh, Se-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.154-161
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

  • PDF

Performance Evaluation of Five-DOF Motion under Static and Dynamic Conditions of Ultra-precision Linear Stage (초정밀 직선 스테이지에서 5 자유도 운동의 정적 및 동적 성능 평가)

  • Lee, Jae-Chang;Lee, Kwang-Il;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.423-430
    • /
    • 2014
  • In this study, the five-DOF motion at ultra-precision linear stage under static and dynamic conditions are evaluated through the extending application of ISO 230-2. As the performance factors, the bi-directional accuracy and repeatability of the five-DOF motion are quantitatively evaluated with the measurement uncertainties which are determined using the standard uncertainty of equipment used in experiment. The motion under static condition are analyzed using geometric errors. The five geometric errors except the linear displacement error are measured using optimal measurement system which is designed to enhance the standard uncertainty of geometric errors. In addition, the motion under dynamic conditions are analyzed with respect to the conditions with different feed rate of the stage. The experimental results shows that the feed rate of stage has a significant effect on straightness motions.

Varying skill prameter based on error signal and its effect

  • Hidaka, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1741-1744
    • /
    • 2005
  • In this paper, we proposed an adaptive skill element based on error signal. We assume that human progress their skills of actions based on errors, then an inverse dynamic of human motion have to changes. Human controller consists from feedback element (FB) and feed forward element (FF) and their elements cooperate to control actions. Under the assumption, we vary the connection of FF and FB by error signal. We propose the index function for change of a skill parameter. From results of the numerical simulations for the varying skill parameter with index function, we consider that the position error given by our vision changes the skill element and we confirm that the position error is the one of the estimate function for the improvement in our skill.

  • PDF

Optimal Parameter Tuning to Compensate for Radius Errors (반경오차 보정을 위한 최적파라미터 튜닝)

  • 김민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.629-634
    • /
    • 2000
  • Generally, the accuracy of motion control systems is strongly influenced by both the mechanical characteristics and servo characteristics of feed drive systems. In the fed drive systems of machine tools that consist of mechanical parts and electrical parts, a torsional vibration is often generated because of its elastic elements in torque transmission. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed drive system. In this paper, based on the simplifies feed drive system model, radius errors due to position gain mismatch and servo response characteristic have been developed and an optimal criterion for tuning the gain of speed controller is discussed. The proportional and integral parameter gain of the feed drive controller are optimal design variables for the gain tuning of PI speed controller. Through the optimization problem formulation, both proportional and integral parameter are optimally tuned so as to compensate the radius errors by using the genetic algorithm. As a result, higher performance on circular profile tests has been achieved than the one with standard parameters.

  • PDF

Control of Servo System with Fuzzy Observer (Fuzzy Observer를 이용한 서보 시스템의 제어)

  • Ryu, Je-Young;Park, Eik-Dong;Huh, Uk-Youl;Lee, Je-Hi
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2461-2463
    • /
    • 2000
  • This paper presents a scheme for designing a fuzzy observer for servo control system with nonlinear element, i.e., backlash. It is found that backlash occurs when the feed direction is reversed. Due to the imperfect transient response of the driving mechanism, not only the static backlash error but also the dynamic backlash error is generated on the contouring profile. And also, we utilized two inertia modeling in order to deals with coupled system accurately. The overall control system consists of two parts - a servo controller and an Fuzzy obsever. It is a Takagi-sugeno type fuzzy model whose consequent part is of the state space form is obtained. A simulation is carried out to demonstrate the effectiveness of the proposed scheme.

  • PDF