• Title/Summary/Keyword: dynamic factor

Search Result 2,077, Processing Time 0.028 seconds

충격하중을 받는 취성재료의 동적응력확대계수 결정 (Detemination of Dynamic Stress Intensity Factor of Brittle Materials under Impact Loading)

  • 이억섭;이찬석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.381-386
    • /
    • 1993
  • This paper describes the dynamic fracture behavior of brittle materials under impact loading by using INSAMCR program with instrumented charpy test machine. To calculate the Dynamic Stress Intensity Factor The finite element analysis methods program, INSAMCR, was used. Dynamic fracture characteristic was researched to verify a relationship between Dynamic Stress Intensity Factor and crack tip propagation velocity in WC-6%Co. The relationship between Dynamic Stress Intensity Factor and crack tip velocity revealed typical .GAMMA. shape. INSAMCR was run to verify experimental results in WC-6%Co and shows a good coincidence.

  • PDF

동적모드 I 등변위상태하에서 전파하는 등방성체의 균열해석 (Analysis of Propagating Crack In Isotropic Material under Dynamic Mode I Constant Displacement)

  • 이광호
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2007-2014
    • /
    • 2000
  • It has been reported that the dynamic stress intensity factor for a propagating crack is increasing or decreasing according to the increasement of the crack propagating velocity. It is confirmed in this study that the increasement or decreasement of stress intensity factor with crack growing velocity is accused by loading condition. When the crack propagates under a constant displacement along upper and lower boundary in finite plate, the dynamic stress intensity factor decreases according to the increasement of the propagating crack velocity. When the crack propagates under a constant stress along upper and lower boundary in finite plate, the dynamic stress intensity factor increases according to the increasement of the propagating crack velocity. The increasement or decreasement of stress intensity factor with crack growing velocity is greater in a fast crack propagation velocity than in a slow one.

스트레인게이지법을 이용한 동적응력확대계수 평가 (Evaluation on dynamic stress intensity factor using strain gage method)

  • 이현철;김덕희;김재훈;문순일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.304-309
    • /
    • 2000
  • Strain gage method is used to evaluate the mode I dynamic stress intensity factor of marging steel(18Ni) and titanium alloy(Ti-6A1-4V). To decide the best strain gage position on specimen, static fracture toughness test was performed. Then instrumented charpy impact test and dynamic tensile test was performed by using strain gage method for evlauating dynamic stress intensity factor. Strain gage signals on the crack tip region are used to calculate the stress intensity factors. It is found that strain gage method is more useful than method by using load which is obtained from impact tup to assess dynamic characteristics such as dynamic stress intensity factor.

  • PDF

직교 이방성체의 동적 응력확대계수에 관한 연구 (II) 등속균열전파 속도하에서 동적모드 III 상태의 응력장, 변위장, 에너지해방률에 관한 연구 (A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(II) A Study on the Stress Field, Displacement Field and Energy Release Rate in the Dynamic Mode III under Constant Crack Propagation Velocity)

  • 이광호;황재석;최선호
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.331-341
    • /
    • 1993
  • The propagating crack problems under dynamic antiplane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems by theoretical method or experimental method in orthotropic material, it is important to know the dynamic stress intensity factor in the vicinity of crack tip. Therefore the dynamic stress field and dynamic displacement field with dynamic stress intensity factor of orthotropic material in mode III were derived. When the crack propagation speed approachs to zero, the dynamic stress components and dynamic displacement components derived in this paper are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determined by using the concept of crack closure energy with the dynamic stresses and dynamic displacements derived in this paper. Finally, the characteristics of crack propagation are studied with the properties of orthotropic material and crack speed. The variation of angle .alpha. between fiber direction and crack propagating direction and crack propagation speed fairly effect on stress component and displacement component in crack tip. The influence of crack propagation speed on the speed on the stress and displacement is greater in the case of .alpha.=90.deg. than in the case of .alpha.=0.deg. and the faster the crack propagation speed, the greater the stress value and displacement value.

등방성체용 동적 광탄성 하이브리드 법 개발에 관한 연구 (A Study on the Development of the Dynamic Photoelastic Hybrid Method for Isotropic Material)

  • 신동철;황재석
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2220-2227
    • /
    • 2000
  • In this paper, dynamic photoelastic hybrid method is developed and its validity is certified. The dynamic photoelastic hybrid method can be used on the obtaining of dynamic stress intensity factors and dynamic stress components. The effect of crack length on the dynamic stress intensity factors is less than those on the static stress intensity factors. When structures are under the dynamic mixed mode load, dynamic stress intensity factor of mode I is almost produced. Dynamic loading device manufactured in this research can be used on the research of dynamic behavior when mechanical resonance is produced and when crack is propagated with the constant velocity.

완충재의 동탄성 및 손실계수 측정 시 영향인자에 관한 연구 (A Study on the Influence Factor in Measuring the Dynamic Stiffness and Loss Factor of Damping Materials)

  • 이성호;정갑철;정진연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.279-282
    • /
    • 2005
  • The aim of this study is to suggest the method of measuring the dynamic stiffness and loss factor of materials used under floating floors in the dwelling by korea standard (KS F 2868). According to the results, the amplitude change of an impact source have no effect on the variation of the dynamic stiffness and loss factor. Comparing with the heating before, heating makes lower the dynamic stiffness except the EPS. In EVA material, the loss factor is increased by heating.

  • PDF

고속철도교량의 동적안정성 평가연구 (An Evaluation Study on the Dynamic Stability of High Speed Railway Bridges)

  • 방명석;정광모
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.43-49
    • /
    • 2012
  • In the design of high speed railway bridges is important a impact factor as a tool of assessing the dynamic capacitys of bridges. However, the impact factor(or dynamic amplification factor, DAF) of high speed railway bridges may essentially be changeable because the dynamic response is affected by the long train length(380 m), number of axles and high speed velocity(300 km/h)(Korea Train eXpress: KTX). Therefore, on this study will be examined the dynamic capacity and stability of the typical PSC Box Girder of high speed railway bridge. At first, the static/dynamic analysis is performed considering the axle load line of KTX based upon existing references. Additionally, the KTX moving load is transformed into the dynamic time series load for conducting various parameter studies like axle length, analytical time increment, velocity of KTX. The time history analysis is repeatedly performed to get maximum dynamic responce by varying axle load length, analytical time increment, velocity of KTX. The study shows that dynamic analysis has resonable results with optimal axle load length(0.6 m) and time increment(0.01 sec.) and maximum DAF and dynamic resonance happens at 270 km/h velocity of KTX.

고속철도교량의 동적응답에 의한 충격계수 산정 (Impact Factor of High-Speed Railway Bridges from Dynamic Response under KTX Running)

  • 윤혜진;진원종;곽종원;황의승;김병석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1631-1635
    • /
    • 2011
  • To consider dynamic magnification effect at the static design stage, impact load factor is applied to design load. Current impact load factor adopted EUROCODE without verification while Japan suggested impact load factor including velocity of high-speed train throughout theoretical and experimental studies. On the purpose of evaluate current impact load factor, this study investigated the calculation of impact load factor from dynamic response of running train.

  • PDF

Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action

  • Ferraioli, Massimiliano
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.253-269
    • /
    • 2019
  • This paper investigates the effects of the tensile catenary action on dynamic increase factor (DIF) in the nonlinear static analysis for progressive collapse of steel-frame buildings. Numerical analyses were performed to verify the accuracy of the empirical and analytical expressions proposed in the literature in cases where the catenary action is activated. For this purpose, nonlinear static and dynamic analyses of a series of steel moment frame buildings with a different number of spans and stories were carried out following the alternate path method. Different column removal scenarios were considered as separate load cases. The dynamic increase factor that approximately compensates for the dynamic effects in the nonlinear static analysis was selected so to match results from the nonlinear dynamic analysis. The study results showed that the many expressions in literature may not work in cases where the catenary stage is fully developed.

Investigation of dynamic P-Δ effect on ductility factor

  • Han, Sang Whan;Kwon, Oh-Sung;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.249-266
    • /
    • 2001
  • Current seismic design provisions allow structures to deform into inelastic range during design level earthquakes since the chance to meet such event is quite rare. For this purpose, design base shear is defined in current seismic design provisions as the value of elastic seismic shear force divided by strength reduction factor, R (${\geq}1$). Strength reduction factor generally consists of four different factors, which can account for ductility capacity, overstrength, damping, and redundancy inherent in structures respectively. In this study, R factor is assumed to account for only the ductility rather than overstrength, damping, and redundancy. The R factor considering ductility is called "ductility factor" ($R_{\mu}$). This study proposes ductility factor with correction factor, C, which can account for dynamic P-${\Delta}$ effect. Correction factor, C is established as the functional form since it requires computational efforts and time for calculating this factor. From the statistical study using the results of nonlinear dynamic analysis for 40 earthquake ground motions (EQGM) it is shown that the dependence of C factor on structural period is weak, whereas C factor is strongly dependant on the change of ductility ratio and stability coefficient. To propose the functional form of C factor statistical study is carried out using 79,920 nonlinear dynamic analysis results for different combination of parameters and 40 EQGM.