• Title/Summary/Keyword: dynamic excitation

Search Result 924, Processing Time 0.114 seconds

Dynamic Analysis of an Optical Disk Drive with Dynamic Vibration Absorber (동흡진기를 채용한 광 디스크 드라이브의 동적 해석)

  • 김남웅;김국원;황효균;김동규;이진우;김외열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.867-870
    • /
    • 2002
  • In high-speed optical disk drive, the excitation caused by rotation of a mass-unbalanced disk is a major source of vibration. The vibration can be a disturbance to the servo system, which is sufficient to cause severe failures in the reading and writing process. The vibration also causes users to feel unpleasantness. The vibration reduction is therefore essential for the reliable operation of optical disk drive. One of the approaches to reduce the vibration is a dynamic vibration absorber (DVA). In this paper, we analyze the dynamic behavior of $DVD\pmRW$ combo drive system with DVA through 12_dof rigid multi-body dynamic model. The effective location and the optimal frequency ratio are obtained from the analysis.

  • PDF

Experiment and analysis of dynamic coupling phenomenon in a seat (시트에서 발생하는 동적 커플링 현상 실험 및 분석)

  • Min, Kyongwon;Kim, Deokman;Park, Hyunkyu;Park, Junhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.1004-1006
    • /
    • 2014
  • This study was conducted to improve the understanding of factors affecting an automobile seat cushion in dynamic conditions. When there are two dummies on the seat to measure each places respectively at once, the shape of the transfer function changes because the dummies affect each other as if they are linked with some kind of a spring when under excitation. A simple two-degree-of-freedom linear model is used to define a translational stiffness of dynamic coupling phenomenon. The cushion deflection model was created to find the relation between dynamic coupling and distance. Experimental set-up was made to compare with the two-degree-of-freedom linear model. The dynamic coupling factor could be utilized to improve the dynamic comfort of automobile seats.

  • PDF

Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations

  • Asgari, Gholamreza;Payganeh, Gholamhassan;Fard, Keramat Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.525-540
    • /
    • 2019
  • The purpose of the present work was to study the dynamic instability of a three-layered, symmetric sandwich beam subjected to a periodic axial load resting on nonlinear elastic foundation. A higher-order theory was used for analysis of sandwich beams with soft core on elastic foundations. In the higher-order theory, the Reddy's third-order theory was used for the face sheets and quadratic and cubic functions were assumed for transverse and in-plane displacements of the core, respectively. The elastic foundation was modeled as nonlinear's type. The dynamic instability regions and free vibration were investigated for simply supported conditions by Bolotin's method. The results showed that the responses of the dynamic instability of the system were influenced by the excitation frequency, the coefficients of foundation, the core thickness, the dynamic and static load factor. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory.

A polynomial mathematical tool for foundation-soil-foundation interaction

  • Sbartai, Badreddine
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.547-560
    • /
    • 2020
  • This paper studies the dynamic foundation-soil-foundation interaction for two square rigid foundations embedded in a viscoelastic soil layer. The vibrations come from only one rigid foundation placed in the soil layer and subjected to harmonic loads of translation, rocking, and torsion. The required dynamic response of rigid surface foundations constitutes the solution of the wave equations obtained by taking account of the conditions of interaction. The solution is formulated using the frequency domain Boundary Element Method (BEM) in conjunction with the Kausel-Peek Green's function for a layered stratum, with the aid of the Thin Layer Method (TLM), to study the dynamic interaction between adjacent foundations. This approach allows the establishment of a mathematical model that enables us to determine the dynamic displacements amplitude of adjacent foundations according to their different separations, the depth of the substratum, foundations masss, foundations embedded, and the frequencies of excitation. This paper attempts to introduce an approach based on a polynomial mathematical tool conducted from several results of numerical methods (BEM-TLM) so that practicing civil engineers can evaluation the dynamic foundations displacements more easy.

Effect of Size Factor on Estimating Elastic Modulus of Disk-Shaped Concrete Specimen Using Impact Resonance Test (충격공진법을 이용한 콘크리트 원판 시편의 탄성계수 추정에 크기 인자가 미치는 영향)

  • Kim, Min-Suk;Son, Joeng Jin;Lee, Chang Joon;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • In this work, a depth-by-depth evaluation on the deterioration of concrete is suggested by utilizing disk shaped concrete specimens. Dynamic elastic modulus of cylindrical concrete was measured using a free-free resonance column method and compared with dynamic elastic modulus of disk-shaped concrete measured by impulse excitation technique(IET) and impact resonance(IR). According to the results of the experiment, both IET and IR methods showed a smaller difference in dynamic elastic modulus with smaller deviation in data when thickness of the disk specimen was increased. This trend was more evident from dynamic elastic modulus measured by IR method compared to that measured by IET. Variation in data was also smaller with the IR result. To increase the accuracy of the data, it is recommended to use the IR method for disk specimen with a diameter of 100mm and a thickness of 25mm.

Dynamic Analysis of Structures under Moving Loads in Time and Frequency Domain (이동하중을 받는 구조물에 대한 시간영역과 주파수영역에서의 동적해석)

  • Kong, Min Sik;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.87-94
    • /
    • 2007
  • A structural dynamic analysis can be divided into a time domain analysis and a frequency domain analysis. The time domain analysis makes use of a direct integration method or a mode superposition method and the frequency domain analysis applies a DFT method. Generally the DFT method is more effective method in case of calculating response of periodic excitation. But in case of transient excitation exact solution can not be acquired. So, by modifying the response or increasing the period accuracy of solution can be enhanced. Accordingly this study analyzed dynamic responses of structures under aperiodic moving load in time domain and frequence domain. Consequently it is concluded that exact solution would be get enough using DFT method by increasing the duration of free vibration or modifying the dynamic response.

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드 타입 마운트의 동특성)

  • Ahn, Young-Kong;Yang, Bo-Suk;Ha, Jong-Yong;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.349.1-349
    • /
    • 2002
  • This paper presents investigation of damping characteristics of squeeze mode type MR mount experimently. The MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. Impact and force excitation tests were performed. The dynamic property of the mount using MR fluid was compared with that of the mount using conventional oil. (omitted)

  • PDF

Fiber-optic interferometric accelerometer using silicon micromachining. (실리콘 마이크로머시닝을 이용한 광섬유 간섭계형 가속도 센서)

  • 권혁춘;김응수;김경찬;강신원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.322-323
    • /
    • 2003
  • Silicon substrate was fabricated by bulk silicon micromachining and it's structure is based on a proof mass suspended by two beam. To monitor the acceleration, dynamic excitation of accelerometer was performed using a shaker. The attached FFPI and suspension beam are bent because support beam move with variation of the proof mass. Thus phase difference detected by the acceleration change. So we can know that resonance frequency of fabricated accelerometer is about 557 Hz and dynamic range was measured from 0 g to 2 g.

  • PDF

Effects of Foundation Motions on Dynamic Behaviors of a Bridge under Seismic Excitations (교량거동에 미치는 기초의 회전 및 병진운동의 영향)

  • 김상효;마호성;함형진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.216-222
    • /
    • 1998
  • Effects of translational and rotational motions of the foundation on the dynamic behaviors of a bridge under seismic excitations are examined by utilizing a simplified 3 degree-of-freedom of system. To consider the nonlinear characteristics of the RC pier, a hysteresis model is adapted, which can simulate the inelastic motion of the pier with the stiffness degradation. From results, the portion of the total displacement due to rotational motion of the foundation becomes larger as applied seismic excitation increases.

  • PDF