• Title/Summary/Keyword: dynamic equations of motion

Search Result 884, Processing Time 0.025 seconds

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

A Study of the Location and Shape of the Ship using GPS (GPS를 이용한 선박 위치 및 자세 형상 제어 연구)

  • Park, Jung-Won;Kim, Han-Sil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.86-93
    • /
    • 2011
  • The ship movement implies current position, wave, wind, and its other factors. We need to know exactly the location and the shape of the ship and control its motion because of these effects. In order to control the small ship according to the movement of the large ship, the position and shape of the ship should be given first. In this paper we propose the method with which we know the current status of the ship without dynamic equations of the ship. There are several methods to track the system such as optical, radio frequency, radar, camera, and infrared light. We propose the movement of the ship using the GPS absolute axis. But, the genuine error by the GPS itself and the movement of the ship cause the result of the GPS of not being accurate. This paper reduces the error of the location and the shape of the ship and gives the exact values of the ship movements even if the GPS implies some error itself.

A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades

  • Arrigan, John;Huang, Chaojun;Staino, Andrea;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.177-201
    • /
    • 2014
  • With the increased size and flexibility of the tower and blades, structural vibrations are becoming a limiting factor towards the design of even larger and more powerful wind turbines. Research into the use of vibration mitigation devices in the turbine tower has been carried out but the use of dampers in the blades has yet to be investigated in detail. Mitigating vibrations will increase the design life and hence economic viability of the turbine blades and allow for continual operation with decreased downtime. The aim of this paper is to investigate the effectiveness of Semi-Active Tuned Mass Dampers (STMDs) in reducing the edgewise vibrations in the turbine blades. A frequency tracking algorithm based on the Short Time Fourier Transform (STFT) technique is used to tune the damper. A theoretical model has been developed to capture the dynamic behaviour of the blades including the coupling with the tower to accurately model the dynamics of the entire turbine structure. The resulting model consists of time dependent equations of motion and negative damping terms due to the coupling present in the system. The performances of the STMDs based vibration controller have been tested under different loading and operating conditions. Numerical analysis has shown that variation in certain parameters of the system, along with the time varying nature of the system matrices has led to the need for STMDs to allow for real-time tuning to the resonant frequencies of the system.

Response of square tension leg platforms to hydrodynamic forces

  • Abou-Rayan, A.M.;Seleemah, Ayman A.;El-Gamal, Amr R.
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.115-135
    • /
    • 2012
  • The very low natural frequencies of tension leg platforms (TLP's) have raised the concern about the significance of the action of hydrodynamic wave forces on the response of such platforms. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that coupling between various degrees of freedom has insignificant effect on the displacement responses. Moreover, for short wave periods (i.e., less than 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on the wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about its original position. Also, for short wave periods, a higher mode contribution to the pitch response accompanied by period doubling appeared to take place. For long wave periods, (12.5 and 15 sec.), this higher mode contribution vanished after very few cycles.

Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman Filter

  • Chatzi, Eleni N.;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.295-328
    • /
    • 2015
  • In recent years the monitoring of structural behavior through acquisition of vibrational data has become common practice. In addition, recent advances in sensor development have made the collection of diverse dynamic information feasible. Other than the commonly collected acceleration information, Global Position System (GPS) receivers and non-contact, optical techniques have also allowed for the synchronous collection of highly accurate displacement data. The fusion of this heterogeneous information is crucial for the successful monitoring and control of structural systems especially when aiming at real-time estimation. This task is not a straightforward one as measurements are inevitably corrupted with some percentage of noise, often leading to imprecise estimation. Quite commonly, the presence of noise in acceleration signals results in drifting estimates of displacement states, as a result of numerical integration. In this study, a new approach based on a time domain identification method, namely the Unscented Kalman Filter (UKF), is proposed for correcting the "drift effect" in displacement or rotation estimates in an online manner, i.e., on the fly as data is attained. The method relies on the introduction of artificial white noise (WN) observations into the filter equations, which is shown to achieve an online correction of the drift issue, thus yielding highly accurate motion data. The proposed approach is demonstrated for two cases; firstly, the illustrative example of a single degree of freedom linear oscillator is examined, where availability of acceleration measurements is exclusively assumed. Secondly, a field inspired implementation is presented for the torsional identification of a tall tower structure, where acceleration measurements are obtained at a high sampling rate and non-collocated GPS displacement measurements are assumed available at a lower sampling rate. A multi-rate Kalman Filter is incorporated into the analysis in order to successfully fuse data sampled at different rates.

An Efficient Structural Analysis of Multistory Buildings (고층건물의 효율적인 구조해석)

  • Kim, Kyeong Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.141-153
    • /
    • 1987
  • The prediction of the exact behavior of multistory building is one of the most complicated problem encountered in structural engineering practice. An efficient computer method for the three dimensional analysis of building structures is presented in this paper. A multistory building is idealized as an assemblage of a series of rectangular plane frames interconnected by rigid floor diaphragms. The matrix condensation technique is employed for the reduction of degrees of freedom, which results in a significant saving in computational efforts and the required memory size. Kinematical approach was used to assemble condensed stiffness matrices of plane frames into a three dimensional stick model stiffness matrix. The static analysis follows the modified tridiagonal approach. Since this procedure utilizes the condensed stiffness matrix of the structure, the dynamic equations of motion for the story displacement are developed by assigning proper mass for each story. Analysis results of several example structures are compared to those obtained by using the well-known SAP IV for verification of the accuracy and efficiency of the computer program PFS which was developed utilizing the method proposed in this study. The analysis method proposed in this study can be used as an efficient and economical means for the analysis of multistory buildings.

  • PDF

Free vibration investigation of functionally graded plates with temperature-dependent properties resting on a viscoelastic foundation

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Amina Attia;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • The free vibration of temperature-dependent functionally graded plates (FGPs) resting on a viscoelastic foundation is investigated in this paper using a newly developed simple first-order shear deformation theory (FSDT). Unlike other first order shear deformation (FSDT) theories, the proposed model contains only four variables' unknowns in which the transverse shear stress and strain follow a parabolic distribution along the plates' thickness, and they vanish at the top and bottom surfaces of the plate by considering a new shape function. For this reason, the present theory requires no shear correction factor. Linear steady-state thermal loads and power-law material properties are supposed to be graded across the plate's thickness. Uniform, linear, non-linear, and sinusoidal thermal rises are applied at the two surfaces for simply supported FGP. Hamilton's principle and Navier's approach are utilized to develop motion equations and analytical solutions. The developed theory shows progress in predicting the frequencies of temperature-dependent FGP. Numerical research is conducted to explain the effect of the power law index, temperature fields, and damping coefficient on the dynamic behavior of temperature-dependent FGPs. It can be concluded that the equation and transformation of the proposed model are as simple as the FSDT.

Analyses of Behaviors of a Shape-Memory-Alloy Torque Tube Actuator (형상기억합금 비틀림 튜브 작동기의 거동 해석)

  • Kim, Jun-Hyoung;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1083-1089
    • /
    • 2010
  • Shape memory alloys (SMAs) are smart materials. The unique characteristics of SMAs enable the production of large force and displacement. Hence, SMAs can be used in many applications such as in actuators and active structural acoustic controllers; the SMAs can also be used for dynamic tuning and shape control. A SMA torque tube actuator consisting of SMA tubes and superelastic springs is proposed, and the behaviors of the actuator are investigated. From the results of heat transfer analysis, it is proved that the SMA torque tube actuator with both resistive heating of SMA itself and a separate conventional heating rod in the tube core has good performance. The behavior of an actuator system was analyzed by performing a contact analysis, and the twisting motion was noticed when checking the actuation. 3D SMA nonlinear constitutive equations were formulated numerically and implemented by performing a nonlinear analysis by using Abaqus UMAT.

Design of Control System for Organic Flight Array based on Back-stepping Controller (Backstepping 기법을 이용한 유기적 비행 어레이의 제어시스템 설계)

  • Oh, Bokyoung;Jeong, Junho;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.711-723
    • /
    • 2017
  • This paper proposes a flight control system for an organic flight array(OFA) which has a new configuration to consist of multi modularized ducted-fan unmanned aerial vehicles (UAVs). The OFA is able to apply to various missions such as indoor reconnaissance, communication relay, and radar jamming by using capability of hover flight. The OFA has a distinguished advantage due to reconfigurable structure to assemble or separate with respect to its missions or operational conditions. A dynamic modelling of the OFA is derived based on equations of motion of the single ducted-fan modules. In order to apply nonlinear control method, an affine system of attitude dynamics is derived. Moreover, the control system is composed of a back-stepping controller for attitude control and a PID controller for position control. Then the performance of the proposed controller is verified via a numerical simulation under wind disturbance.

Analysis on Tension Response of Mooring Line by Lateral Excitation (수평가진에 의한 계류라인의 장력응답 해석)

  • Jung Dong Ho;Kim Hyeon Ju;Moon Deok Su;Park Han Il;Choi Hak Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.185-191
    • /
    • 2004
  • A mooring system can be applied to keep the position of a floating structures. In this study, the structural analysis is carried out to analyze the dynamic characteristics of a mooring line for a floating breakwater. A three-dimensional equations of motion for a submerged chain are derived. Bending stiffness is considered for the necessary restoring force in the regions of zero tension. A fortran program is to be developed by employing finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. The results of simulation show good agreement in tension response pattern with the experimental results of a reference. The results of this study can contribute for the design of mooring system for a floating breakwater.

  • PDF