• Title/Summary/Keyword: dynamic decision network

Search Result 128, Processing Time 0.03 seconds

Fault Detection Algorithm of Photovoltaic Power Systems using Stochastic Decision Making Approach (확률론적 의사결정기법을 이용한 태양광 발전 시스템의 고장검출 알고리즘)

  • Cho, Hyun-Cheol;Lee, Kwan-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.212-216
    • /
    • 2011
  • Fault detection technique for photovoltaic power systems is significant to dramatically reduce economic damage in industrial fields. This paper presents a novel fault detection approach using Fourier neural networks and stochastic decision making strategy for photovoltaic systems. We achieve neural modeling to represent its nonlinear dynamic behaviors through a gradient descent based learning algorithm. Next, a general likelihood ratio test (GLRT) is derived for constructing a decision malling mechanism in stochastic fault detection. A testbed of photovoltaic power systems is established to conduct real-time experiments in which the DC power line communication (DPLC) technique is employed to transfer data sets measured from the photovoltaic panels to PC systems. We demonstrate our proposed fault detection methodology is reliable and practicable over this real-time experiment.

An Integrated Mathematical Model for Supplier Selection

  • Asghari, Mohammad
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.29-42
    • /
    • 2014
  • Extensive research has been conducted on supplier evaluation and selection as a strategic and crucial component of supply chain management in recent years. However, few articles in the previous literature have been dedicated to the use of fuzzy inference systems as an aid in decision-making. Therefore, this essay attempts to demonstrate the application of this method in evaluating suppliers, based on a comprehensive framework of qualitative and quantitative factors besides the effect of gradual coverage distance. The purpose of this study is to investigate the applicability of the numerous measures and metrics in a multi-objective optimization problem of the supply chain network design with the aim of managing the allocation of orders by coordinating the production lines to satisfy customers' demand. This work presents a dynamic non-linear programming model that examines the important aspects of the strategic planning of the manufacturing in supply chain. The effectiveness of the configured network is illustrated using a sample, following which an exact method is used to solve this multi-objective problem and confirm the validity of the model, and finally the results will be discussed and analyzed.

Dynamic Access and Power Control Scheme for Interference Mitigation in Femtocell Networks

  • Ahmed, Mujeeb;Yoon, Sung-Guk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4331-4346
    • /
    • 2015
  • The femtocell network, which is designed for low power transmission and consists of consumer installed small base stations, coexists with macrocells to exploit spatial reuse gain. For its realization, cross-tier interference mitigation is an important issue. To solve this problem, we propose a joint access and power control scheme that requires limited information exchange between the femto and macro networks. Our objective is to maximize the network throughput while satisfying each user's quality of service (QoS) requirement. To accomplish this, we first introduce two distributed interference detection schemes, i.e., the femto base station and macro user equipment based schemes. Then, the proposed scheme dynamically adjusts the transmission power and makes a decision on the access mode of each femto base station. Through extensive simulations, we show that the proposed scheme outperforms earlier works in terms of the throughput and outage probability.

Computer modelling of fire consequences on road critical infrastructure - tunnels

  • Pribyl, Pavel;Pribyl, Ondrej;Michek, Jan
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • The proper functioning of critical points on transport infrastructure is decisive for the entire network. Tunnels and bridges certainly belong to the critical points of the surface transport network, both road and rail. Risk management should be a holistic and dynamic process throughout the entire life cycle. However, the level of risk is usually determined only during the design stage mainly due to the fact that it is a time-consuming and costly process. This paper presents a simplified quantitative risk analysis method that can be used any time during the decades of a tunnel's lifetime and can estimate the changing risks on a continuous basis and thus uncover hidden safety threats. The presented method is a decision support system for tunnel managers designed to preserve or even increase tunnel safety. The CAPITA method is a deterministic scenario-oriented risk analysis approach for assessment of mortality risks in road tunnels in case of the most dangerous situation - a fire. It is implemented through an advanced risk analysis CAPITA SW. Both, the method as well as the resulting software were developed by the authors' team. Unlike existing analyzes requiring specialized microsimulation tools for traffic flow, smoke propagation and evacuation modeling, the CAPITA contains comprehensive database with the results of thousands of simulations performed in advance for various combinations of variables. This approach significantly simplifies the overall complexity and thus enhances the usability of the resulting risk analysis. Additionally, it provides the decision makers with holistic view by providing not only on the expected risk but also on the risk's sensitivity to different variables. This allows the tunnel manager or another decision maker to estimate the primary change of risk whenever traffic conditions in the tunnel change and to see the dependencies to particular input variables.

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

Development of A Dynamic Departure Time Choice Model based on Heterogeneous Transit Passengers (이질적 지하철승객 기반의 동적 출발시간선택모형 개발 (도심을 목적지로 하는 단일 지하철노선을 중심으로))

  • 김현명;임용택;신동호;백승걸
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.5
    • /
    • pp.119-134
    • /
    • 2001
  • This paper proposed a dynamic transit vehicle simulation model and a dynamic transit passengers simulation model, which can simultaneously simulate the transit vehicles and passengers traveling on a transit network, and also developed an algorithm of dynamic departure time choice model based on individual passenger. The proposed model assumes that each passenger's behavior is heterogeneous based on stochastic process by relaxing the assumption of homogeneity among passengers and travelers have imperfect information and bounded rationality to more actually represent and to simulate each passenger's behavior. The proposed model integrated a inference and preference reforming procedure into the learning and decision making process in order to describe and to analyze the departure time choices of transit passengers. To analyze and evaluate the model an example transit line heading for work place was used. Numerical results indicated that in the model based on heterogeneous passengers the travelers' preference influenced more seriously on the departure time choice behavior, while in the model based on homogeneous passengers it does not. The results based on homogeneous passengers seemed to be unrealistic in the view of rational behavior. These results imply that the aggregated travel demand models such as the traditional network assignment models based on user equilibrium, assuming perfect information on the network, homogeneity and rationality, might be different from the real dynamic travel demand patterns occurred on actual network.

  • PDF

Stealthy Behavior Simulations Based on Cognitive Data (인지 데이터 기반의 스텔스 행동 시뮬레이션)

  • Choi, Taeyeong;Na, Hyeon-Suk
    • Journal of Korea Game Society
    • /
    • v.16 no.2
    • /
    • pp.27-40
    • /
    • 2016
  • Predicting stealthy behaviors plays an important role in designing stealth games. It is, however, difficult to automate this task because human players interact with dynamic environments in real time. In this paper, we present a reinforcement learning (RL) method for simulating stealthy movements in dynamic environments, in which an integrated model of Q-learning with Artificial Neural Networks (ANN) is exploited as an action classifier. Experiment results show that our simulation agent responds sensitively to dynamic situations and thus is useful for game level designer to determine various parameters for game.

A Query Model for Consecutive Analyses of Dynamic Multivariate Graphs (동적 다변량 그래프의 연속적 분석을 위한 질의 모델 설계 및 구현)

  • Bae, Yechan;Ham, Doyoung;Kim, Taeyang;Jeong, Hayjin;Kim, Dongyoon
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.6
    • /
    • pp.103-113
    • /
    • 2014
  • This study designed and implemented a query model for consecutive analyses of dynamic multivariate graph data. First, the query model consists of two procedures; setting the discriminant function, and determining an alteration method. Second, the query model was implemented as a query system that consists of a query panel, a graph visualization panel, and a property panel. A Node-Link Diagram and the Force-Directed Graph Drawing algorithm were used for the visualization of the graph. The results of the queries are visually presented through the graph visualization panel. Finally, this study used the data of worldwide import & export data of small arms to verify our model. The significance of this research is in the fact that, through the model which is able to conduct consecutive analyses on dynamic graph data, it helps overcome the limitations of previous models which can only perform discrete analysis on dynamic data. This research is expected to contribute to future studies such as online decision making and complex network analysis, that use dynamic graph models.

  • PDF

Design of Machine Learning based Smart Service Abstraction Layer for Future Network Provisioning (미래 네트워크 제공을 위한 기계 학습 기반 스마트 서비스 추상화 계층 설계)

  • Vu, Duc Tiep;N., Gde Dharma;Kim, Kyungbaek;Choi, Deokjai
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.114-116
    • /
    • 2016
  • Recently, SDN and NFV technology have been developed actively and provide enormous flexibility of network provisioning. The future network services would generally involve many different types of services such as hologram games, social network live streaming videos and cloud-computing services, which have dynamic service requirements. To provision networks for future services dynamically and efficiently, SDN/NFV orchestrators must clearly understand the service requirements. Currently, network provisioning relies heavily on QoS parameters such as bandwidth, delay, jitter and throughput, and those parameters are necessary to describe the network requirements of a service. However it is often difficult for users to understand and use them proficiently. Therefore, in order to maintain interoperability and homogeneity, it is required to have a service abstraction layer between users and orchestrators. The service abstraction layer analyzes ambiguous user's requirements for the desired services, and this layer generates corresponding refined services requirements. In this paper, we present our initial effort to design a Smart Service Abstraction Layer (SmSAL) for future network architecture, which takes advantage of machine learning method to analyze ambiguous and abstracted user-friendly input parameters and generate corresponding network parameters of the desired service for better network provisioning. As an initial proof-of-concept implementation for providing viability of the proposed idea, we implemented SmSAL with a decision tree model created by learning process with previous service requests in order to generate network parameters related to various audio and video services, and showed that the parameters are generated successfully.

The Development of A Dynamic Traffic Assignment Technique using the Cell Transmission Theory (Cell Transmission 이론을 이용한 동적통행배정기법 개발에 관한 연구)

  • 김주영;이승재;손의영
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.4
    • /
    • pp.71-84
    • /
    • 1999
  • The purpose of this study is to construct a dynamic traffic analysis model using the existing traffic flow theory in order to develope a dynamic traffic assignment technique. In this study the dynamic traffic analysis model was constructed using Daganzo's CELL TRANSMISSION THEORY which was considered more suitable to dynamic traffic assignment than the other traffic flow theories. We developed newly the diverging split module, the cost update module and the link cost function and defined the maximum waiting time decision function that Daganzo haven't defined certainly at his Papers. The output that resulted from the simulation of the dynamic traffic analysis model with test network I and II was shown at some tables and figures, and the analysis of the bottleneck and the HOV lane theory showed realistic outputs. Especially, the result of traffic assignment using the model doesn't show equilibrium status every time slice but showed that the average travel cost of every path maintains similarly in every time slice. It is considered that this model can be used at the highway operation and the analysis of traffic characteristics at a diverging section and the analysis of the HOV lane effect.

  • PDF