• Title/Summary/Keyword: dynamic column

Search Result 579, Processing Time 0.026 seconds

Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames (철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

Data Reduction and Analysis of the Resonant Column Testing Based on the Equation of Motion (운동방정식에 기초한 공진주 실험의 자료분석 및 해석)

  • 조성호;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.133-144
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and material damping factor of soils. The method has been widely used for many applications and its importance has increased. Since the first use of the testing method in 1960's, the low-technology electronic devices fir testing and data acquisition have limited the measurement only to the amplitude of the linear spectrum. The limitations of the testing method are also attributed to the assumption of linear-elastic material in the theory of the resonant column testing and also to the incomplete understanding of the dynamic behaviour of the resonant column testing device. Recently, Joh et al. proposed a theory to overcome the limitations of the resonant column testing by deriving the equation of motion and providing its solution for the resonant column testing device. This study proposed the improved data reduction and analysis method for the resonant column testing, thanks to the advanced data acquisition system and the new theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were performed fir Joomunjin sand, which verified the feasibility of the proposed method and revealed the limitations of the conventional data reduction and analysis method.

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

Analysis of Volatile Fatty Acids in Air by Dynamic SPME (Dynamic SPME를 이용한 공기 중 지방산 분석)

  • Yu, Mee-Seon;Yang, Sung-Bong;Ha, Nam-Ki
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1447-1454
    • /
    • 2010
  • In this study, the detection limits of lower fatty acids in air were investigated by using Dynamic SPME(Solid Phase Micro-Extraction), i.e. improved Head Space - SPME method(HS-SPME). This Dynamic SPME, called SPDE(Solid Phase Dynamic Extraction), is the analytical method for volatile compounds in air with the extraction by using a stainless steel needle of which inner surface is coated with adsorption material and following the gas chromatographic analysis by inserting the needle into a injection port of GC and subsequently, desorption of the volatile compounds into a gas-chromatographic column. Extraction was carried out by passing the sample air through the needle with a suction pump which has been used for a detection tube. The result of measurement for the 6 lower fatty acids showed that the detection limits ranged from 0.10 ppm to 0.44 ppm and the linear correlation coefficients were over 0.99. Relative standard deviations obtained from 5 analytical repetition of a ca. 1.6 ppm standard mixture were in the range of 1.87%~2.47%. This method has been shown to be a adequate for the measuring C2~C5 fatty acids in air in the concentrations of over several hundreds ppb.

Comparison of simulated platform dynamics in steady/dynamic winds and irregular waves for OC4 semi-submersible 5MW wind-turbine against DeepCwind model-test results

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-21
    • /
    • 2016
  • The global performance of the 5 MW OC4 semisubmersible floating wind turbine in random waves with or without steady/dynamic winds is numerically simulated by using the turbine-floater-mooring fully coupled dynamic analysis program FAST-CHARM3D in time domain. The numerical simulations are based on the complete second-order diffraction/radiation potential formulations along with nonlinear viscous-drag force estimations at the body's instantaneous position. The sensitivity of hull motions and mooring dynamics with varying wave-kinematics extrapolation methods above MWL(mean-water level) and column drag coefficients is investigated. The effects of steady and dynamic winds are also illustrated. When dynamic wind is added to the irregular waves, it additionally introduces low-frequency wind loading and aerodynamic damping. The numerically simulated results for the 5 MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model-test results by Technip/NREL/UMaine. Those numerical-simulation results have good correlation with experimental results for all the cases considered.

Progressive Collapse Resisting Capacity of Moment Frames with Viscous Dampers (점성감쇠기가 설치된 모멘트골조의 연쇄붕괴 저항성능)

  • Kim, Jin-Koo;Lee, Seung-Jun;Choi, Hyun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.517-524
    • /
    • 2010
  • In this paper the progressive collapse resisting capacity of steel moment frames with viscous dampers was evaluated by nonlinear dynamic analysis. The effects of dampers installed in steel beam-column sub-assemblages with varying natural period and yield strength were evaluated after sudden removal of a column. According to the parametric study the vertical displacement general decreased as the damping ratio of the system increased, and the dampers were effective both in elastic and elasto-plastic systems. The nonlinear dynamic analysis results of the 15-story analysis models showed that the decrease in vertical deflection of the structure with 9m span length, which showed larger deflection, was more predominant than that of the structure with 6m span length.

Influence of pinching effect of exterior joints on the seismic behavior of RC frames

  • Favvata, Maria J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • Nonlinear dynamic analyses are carried out to investigate the influence of the pinching hysteretic response of the exterior RC beam-column joints on the seismic behavior of multistory RC frame structures. The effect of the pinching on the local and global mechanisms of an 8-storey bare frame and an 8-storey pilotis type frame structure is evaluated. Further, an experimental data bank extracted from literature is used to acquire experimental experience of the range of the real levels that have to be considered for the pinching effect on the hysteretic response of the joints. Thus, three different cases for the hysteretic response of the joints are considered: (a) joints with strength and stiffness degradation characteristics but without pinching effect, (b) joints with strength degradation, stiffness degradation and low pinching effect and (c) joints with strength degradation, stiffness degradation and high pinching effect. For the simulation of the beam-column joints a special-purpose rotational spring element that incorporates the examined hysteretic options developed by the authors and implemented in a well-known nonlinear dynamic analysis program is employed for the analysis of the structural systems. The results of this study indicate that the effect of pinching on the local and global responses of the examined cases is not really significant at early stages of the seismic loading and especially in the cases when strength degradation in the core of exterior joint has occurred. Nevertheless in the cases when strength degradation does not occur in the joints the pinching may increase the demands for ductility and become critical for the columns at the base floor of the frame structures. Finally, as it was expected the ability for energy absorption was reduced due to pinching effect.

Dynamic Characteristic of A Bi-dirctional Damper Using A Tuned Mass Damper and A Tuned Liquid Column Damper (TMD와 TLCD를 이용한 2방향 감쇠기의 동적특성)

  • Lee, Sung-Kyung;Min, Kyung-Won;Park, Eun-Churn
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.589-596
    • /
    • 2008
  • This study introduces the design of a bi-directional damper using a tuned mass damper(TMD) and a tuned liquid column damper(TLCD) and presents experimental verifications to confirm its control performance. The damper used in this study behaves as a TMD in a specific translational direction and acts as a TLCD in the other orthogonal direction. First, shaking table test is performed to investigate the coupled effect of control forces produced by TMD and TLCD. Then, the parameters that affect to dynamic characteristics of the proposed damper are quantitatively evaluated based on the experimental results. Testing results shows that the damper used in this study produces control forces coupled by TLCD and TMD, as it is excited by waves with an incident angle. Also, it is observed that the damper can be used to reduce bi-directional responses of building structures.

Effects of Wave Focusing Device on Performance of OWC Chamber (OWC형 파력발전 공기실의 파랑집중장치의 효과에 대한 수치적인 연구)

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Jin, Ji-Yuan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2010
  • Oscillating Water Column (OWC) device has been widely employed in the wave energy conversion. Wave Focusing Device (WFD) is proposed to be helpful for improving the operating performance of OWC chamber. In the present paper, a Numerical Wave Tank (NWT) using two-phase VOF model is utilized to simulate the generation and propagation of incident regular waves, water column oscillation inside the chamber. The NWT consists of the continuity equation, Reynolds-averaged Navier-Stokes equations and two-phase VOF functions. The standard k- turbulence model, the finite volume method, NITA-PISO algorithm and dynamic mesh technique are employed. Effects of WFD on the operating performance of OWC chamber are investigated numerically.

Application of Lagrangian approach to generate P-I diagrams for RC columns exposed to extreme dynamic loading

  • Zhang, Chunwei;Abedini, Masoud
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.153-167
    • /
    • 2022
  • The interaction between blast load and structures, as well as the interaction among structural members may well affect the structural response and damages. Therefore, it is necessary to analyse more realistic reinforced concrete structures in order to gain an extensive knowledge on the possible structural response under blast load effect. Among all the civilian structures, columns are considered to be the most vulnerable to terrorist threat and hence detailed investigation in the dynamic response of these structures is essential. Therefore, current research examines the effect of blast loads on the reinforced concrete columns via development of Pressure- Impulse (P-I) diagrams. In the finite element analysis, the level of damage on each of the aforementioned RC column will be assessed and the response of the RC columns when subjected to explosive loads will also be identified. Numerical models carried out using LS-DYNA were compared with experimental results. It was shown that the model yields a reliable prediction of damage on all RC columns. Validation study is conducted based on the experimental test to investigate the accuracy of finite element models to represent the behaviour of the models. The blast load application in the current research is determined based on the Lagrangian approach. To develop the designated P-I curves, damage assessment criteria are used based on the residual capacity of column. Intensive investigations are implemented to assess the effect of column dimension, concrete and steel properties and reinforcement ratio on the P-I diagram of RC columns. The produced P-I models can be applied by designers to predict the damage of new columns and to assess existing columns subjected to different blast load conditions.