• Title/Summary/Keyword: dynamic collision properties

Search Result 26, Processing Time 0.017 seconds

Discrete element simulations of continental collision in Asia (아시아 대륙충돌의 개별요소 시뮬레이션)

  • Tanaka Atsushi;Sanada Yoshinori;Yamada Yasuhiro;Matsuoka Toshifumi;Ashida Yuzuru
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Analogue physical modelling using granular materials (i.e., sandbox experiments) has been applied with great success to a number of geological problems at various scales. Such physical experiments can also be simulated numerically with the Discrete Element Method (DEM). In this study, we apply the DEM simulation to the collision between the Indian subcontinent and the Eurasian Plate, one of the most significant current tectonic processes in the Earth. DEM simulation has been applied to various kinds of dynamic modelling, not only in structural geology but also in soil mechanics, rock mechanics, and the like. As the target of the investigation is assumed to be an assembly of many tiny particles, DEM simulation makes it possible to treat an object with large and discontinuous deformations. However, in DEM simulations, we often encounter difficulties when we examine the validity of the input parameters, since little is known about the relationship between the input parameters for each particle and the properties of the whole assembly. Therefore, in our previous studies (Yamada et al.,2002a,2002b,2002c), we were obliged to tune the input parameters by trial and error. To overcome these difficulties, we introduce a numerical biaxial test with the DEM simulation. Using the results of this numerical test, we examine the validity of the input parameters used in the collision model. The resulting collision model is quite similar to the real deformation observed in eastern Asia, and compares well with GPS data and in-situ stress data in eastern Asia.

A Collision Simulation Study on the Structural Stability for a Programmable Drone (충돌 시뮬레이션을 통한 코딩 교육용 드론의 구조적 안정성 연구)

  • Kim, Myung-Il;Jung, Dae-Yong;Kim, Su-Min;Lee, Jin-Kyu;Choi, Mun-Hyun;Kim, Ho-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2019
  • A programmable drone is a drone developed not only to experience the basic principles of flight but also to control drones through Arduino-based programming. Due to the nature of the training drones, the main users are students who are inexperienced in controlling the drones, which often cause frequent collisions with external objects, resulting in high damage to the drones' frame. In this study, the structural stability of the drone was evaluated by means of a structural dynamics based collision simulation for educational drone frame. Collision simulations were performed on three cases according to the impact angle of $0^{\circ}$, $+15^{\circ}$ and $-15^{\circ}$, using an analytical model with approximately 240,000 tetrahedron elements. Using ANSYS LS-DYNA, which provides excellent functions for the simulation of the dynamic behavior of three-dimensional structures, the stress distribution and strain generated on the drone upper, the drone lower, and the ring assembly were analyzed when the drones collided against the wall at a rate of 4 m/s. Safety factors resulting from the equivalent stress and the yield strain were calculated in the range of 0.72 to 2.64 and 1.72 to 26.67, respectively. To ensure structural stability for areas where stress exceeds yield strain and ultimate strain according to material properties, the design reinforcement is presented.

A study of occupant responses in side impact collision (측면충돌시 승객의 거동에 대한 연구)

  • Youn, Y.H.
    • Proceedings of the ESK Conference
    • /
    • 1993.10a
    • /
    • pp.243-251
    • /
    • 1993
  • With the recent issuance of a dynamic side impact test regulation in the Federal Motor Vehicle Safety Standard in the United States of America, many aspects of occupant protection in side impact crashes have been under investigation. Many investigations of real world accidents, crash test results and simulation studies have established that in side impact crashes of passenger cars, thoracic and pelvic injuries of occupant are, large part, caused by occupants' impact against the interior side of the vehicle, primarily the door. This paper is concerned with the development of a lumped mass computer model, which simulates the interaction of a struck car door and an adjacent seated occupant in side impacr, based CTP code which has been successfully used in vehicle and occupant simulation. New model developments include elimination of influence of vehicle side structure stiffness in the occupant injury responses. The model was used to investigated the effect of various door padding characteristics on occupant responses to improve vehicle safety performance. The evaluation of different crush properties of door padding have also focused to understand of behavior of impacted occupant. Results from simulations, The effects of both material coefficients $C_{f}$ and p were illustrated in terms of occupant injury criteria TTI and pelvis.

  • PDF

Investigation of Amorphous Carbon Film Deposition by Molecular Dynamic Simulation (분자 동역학 전산모사에 의한 비정질 탄소 필름의 합성거동 연구)

  • 이승협;이승철;이규환;이광렬
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • Deposition behavior of hard amorphous carbon film was investigated by molecular dynamic simulation using Tersoff potential which was suggested for the interaction potential between carbon atoms. When high energy carbon atoms were collided on diamond (100) surface, dense amorphous carbon film could be obtained. Physical properties of the simulated carbon film were compared with those of the film deposited by filtered cathodic arc process. As in the experimental result, the most diamond-like film was obtained at an optimum kinetic energy of the incident carbon atoms. The optimum kinetic energy was 50 eV, which is comparable to the experimental observation. The simulated film was amorphous with short range order of diamond lattice. At the optimum kinetic energy condition, we found that significant amount of carbon atom were placed at a metastable site of distance 2.1 $\AA$. By melting and quenching simulation of diamond lattice, it was shown that this metastatic peak is Proportional to the quenching rate. These results show that the hard and dense diamond-like film could be obtained when the localized thermal spike due to the collision of high energy carbon atom can be effectively dissipated to the lattice.

Track-Before-Detect Algorithm for Multiple Target Detection (다수 표적 탐지를 위한 Track-Before-Detect 알고리듬 연구)

  • Won, Dae-Yeon;Shim, Sang-Wook;Kim, Keum-Seong;Tahk, Min-Jea;Seong, Kie-Jeong;Kim, Eung-Tai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.848-857
    • /
    • 2011
  • Vision-based collision avoidance system for air traffic management requires a excellent multiple target detection algorithm under low signal-to-noise ratio (SNR) levels. The track-before-detect (TBD) approaches have significant applications such as detection of small and dim targets from an image sequence. In this paper, two detection algorithms with the TBD approaches are proposed to satisfy the multiple target detection requirements. The first algorithm, based on a dynamic programming approach, is designed to classify multiple targets by using a k-means clustering algorithm. In the second approach, a hidden Markov model (HMM) is slightly modified for detecting multiple targets sequentially. Both of the proposed approaches are used in numerical simulations with variations in target appearance properties to provide satisfactory performance as multiple target detection methods.

Measurement of Mechanical and Physical Properties of Pepper for Particle Behavior Analysis

  • Nam, Ju-Seok;Byun, Jun-Hee;Kim, Tae-Hyeong;Kim, Myoung-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.173-184
    • /
    • 2018
  • Purpose: This study was conducted to investigate the mechanical and physical properties of a Korean red pepper variety for particle behavior analysis. Methods: Poisson's ratio, modulus of elasticity, shear modulus, density, coefficient of restitution, and coefficient of friction were derived for "AR Legend," which is a domestic pepper variety. The modulus of elasticity and Poisson's ratio were measured through a compression test using a texture analyzer. The shear modulus was calculated from the modulus of elasticity and Poisson's ratio. The density was measured using a water pycnometer method. The coefficient of restitution was measured using a collision test, and the static and dynamic friction coefficients were measured using a inclined plane test. Each test was repeated 3-5 times except for density measurement, and the results were analyzed using mean values. Results: Poisson's ratios for the pepper fruit and pepper stem were 0.295 and 0.291, respectively. Elastic moduli of the pepper fruit and pepper stem were $1.152{\times}10^7Pa$ and $3.295{\times}10^7Pa$, respectively, and the shear moduli of the pepper fruit and pepper stem were $4.624{\times}10^6Pa$ and $1.276{\times}10^7Pa$, respectively. The density of the pepper fruit and the pepper stem were $601.8kg/m^3$ and $980.4kg/m^3$, respectively. The restitution coefficients between pepper fruits, pepper stems, a pepper fruit and a pepper stem, a pepper fruit and plastic, and a pepper stem and plastic were 0.383, 0.218, 0.277, 0.399, and 0.148, respectively. The coefficients of static friction between pepper fruits, pepper stems, a pepper fruit and a pepper stem, a pepper fruit and plastic, and a pepper stem and plastic were 0.455, 0.332, 0.306, 0.364, and 0.404, respectively. The coefficients of dynamic friction between a pepper fruit and plastic and a pepper stem and plastic were 0.043 and 0.034, respectively.