• Title/Summary/Keyword: dynamic characteristics

Search Result 8,619, Processing Time 0.062 seconds

A Numerical Study on the Dynamic Characteristics of Power Metal using Split Hopkinson Pressure Bar (홉킨스바 장치를 이용한 분말금속의 동적 특성에 관한 수치해석적 연구)

  • Hwang, Du-Sun;Lee, Seung-U;Hong, Seong-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2972-2979
    • /
    • 2000
  • Dynamic characteristics of powder metal is very important to mechanical structures requiring high strength or endurance for impact loading. But owing to distinctive property of powder metal, that is relative, it has been investigated restrictively compared to static characteristics. The objectives of this study is to investigate dynamic characteristics of powder metal and compare it to a fully density material. To find the characteristics, an explicit finite element method is used for simulation of Split Hopkinson Pressure Bar experiment based on the stress wave propagation theory. We obtained a dynamic stress-strain relationship and dynamic behavior of powder metal, as well as the variation of material properties during dynamic deformation.

Probabilistic Analysis of Dynamic Characteristics of Structures considering Joint Fastening and Tolerance (체결부 및 공차를 고려한 구조물의 확률기반 동적 특성 연구)

  • Won, Jun-Ho;Kwang, Kang-Jin;Choi, Joo-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2010
  • Structural vibration is a significant problem in many multi-part or multi-component assemblies. In aircraft industry, structures are composed of various fasteners, such as bolts, snap, hinge, weld or other fastener or connector (collectively "fasteners"). Due to these, prediction and design involving dynamic characteristics is quite complicated. However, the current state of the art does not provide an analytical tool to effectively predict structure's dynamic characteristics, because consideration of structural uncertainties (i.e. material properties, geometric tolerance, dimensional tolerance, environment and so on) is difficult and very small fasteners in the structure cause a huge amount of analysis time to predict dynamic characteristics using the FEM (finite element method). In this study, to resolve the current state of the art, a new approach is proposed using the FEM and probabilistic analysis. Firstly, equivalent elements are developed using simple element (e.g. bar, beam, mass) to replace fasteners' finite element model. Developed equivalent elements enable to explain static behavior and dynamic behavior of the structure. Secondly, probabilistic analysis is applied to evaluate the PDF (probability density function) of dynamic characteristics due to tolerance, material properties and so on. MCS (Monte-Carlo simulation) is employed for this. Proposed methodology offers efficiency of dynamic analysis and reality of the field as well. Simple plates joined by fasteners are taken as an example to illustrate the proposed method.

A Numerical Study on Dynamic Characteristics of a Catenary

  • Kim, Jung-Soo;Kim, Woonkyung M.;Kim, Jeung-Tae;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.860-869
    • /
    • 2003
  • Dynamic characteristics of a catenary that supplies electrical power to high-speed railway is investigated. The catenary is a slender structure composed of repeating spans. Each span is in turn composed of the contact and messenger wires connected by the hangers in regular intervals. A finite element based dynamic model is developed, and numerical simulations are performed to determine the dynamic characteristics of the catenary The influence of the structural parameters on the response characteristics is investigated. The structural parameters considered include tension on the contact and messenger wires, stiffness of the hangers, and the hanger and span spacing. The hanger characteristics are found to be the dominant factors that influence the overall dynamic characteristics of the catenary.

Test Results of Correlation between Behavior and Dynamic Characteristics of Floating Ring Seal In High Pressure Turbopump (고압 터보펌프용 플로팅 링 실의 거동과 동특성의 상관관계에 관한 실험)

  • 신성광;이용복;곽현덕;김창호;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.471-477
    • /
    • 2003
  • The floating ring seal is often used in the turbopump (TP) unit of liquid rocket engine (LRE) owing to its inherent ability of minimizing the leakage flow and superior dynamic characteristics as well. This paper describes the test results concerned with the lock-up and dynamic characteristics of the floating ring seals in the turbopump. The characteristics of the floating ring seals were extracted from the frequency response function (FRF) by instrumental variable method. The experiment was tested at 7.0MPa and 0-24,800 rpm. And the test results were introduced about the dynamic characteristics of floating ring seal related with the eccentricity and attitude angle.

  • PDF

A Study on Characteristics of Perceptual Presentation Methods of Interior Design (실내디자인의 지각적 프리젠테이션 방법의 특성에 관한 연구)

  • 이종란
    • Korean Institute of Interior Design Journal
    • /
    • no.28
    • /
    • pp.265-265
    • /
    • 2001
  • The perceptual presentation of interior design is to represent an interior space planned by a designer as if people see it in reality. The perceptual presentation methods that have developed are perspectives, full-scale models, small-scale models, photography of models, video taping of models, computer images, computer animation, and virtual reality. The purpose of this study is to investigate limits of those perceptual presentation methods according to their characteristics. The methods have characteristics that are either static or dynamic and either monoscopic or stereoscopic. In terms of representing interior spaces and perceiving interior spaces, the dynamic characteristic is more helpful than the static characteristic because the dynamic characteristic provides consecutively changing views of interior spaces when people walk around within the spaces. The stereoscopic characteristic is more helpful than the monoscopic characteristic because the stereoscopic characteristic provides the binocular depth perception. Full-scale models, small-scale models, virtual reality that have dynamic and stereoscopic characteristics, are most effective. The next effective methods are video taping of models and computer animation that have dynamic and monoscopic characteristics. The last effective methods are perspectives and photography of models that have static and monoscopic characteristics. But the most effective methods can not be said that those are perfect because each of them still has limits. Designers have to consider the limits of each perceptual presentation method to find a way that shows their designs most effectively. To develop the perceptual presentation methods of interior design, researchers should focus on the helpful characteristics that are dynamic and stereoscopic.

A Study on Characteristics of Perceptual Presentation Methods of Interior Design (실내디자인의 지각적 프리젠테이션 방법의 특성에 관한 연구)

  • 이종란
    • Korean Institute of Interior Design Journal
    • /
    • no.29
    • /
    • pp.265-272
    • /
    • 2001
  • The perceptual presentation of interior design is to represent an interior space planned by a designer as if people see it in reality. The perceptual presentation methods that have developed are perspectives, full-scathe models, small-scale models, photography of models, video taping of models, computer images, computer animation, and virtual reality. The purpose of this study is to investigate limits of those perceptual presentation methods according to their characteristics. The methods have characteristics that are either static or dynamic and either monoscopic or stereoscopic. In terms of representing interior spaces and perceiving interior spaces, the dynamic characteristic is more helpful than the static characteristic because the dynamic characteristic provides consecutively changing views of interior spaces when people walk around within the spaces. The stereoscopic characteristic is more helpful than the monoscopic characteristic because the stereoscopic characteristic provides the binocular depth perception. Full-scale models, small-scale models, virtual reality that have dynamic and stereoscopic characteristics, are most effective. The next effective methods are video taping of models and computer animation that have dynamic and monoscopic characteristics. The last effective methods are perspectives and photography each of models that haute static and monoscopic characteristics. But the most effective methods can nut be said that those are perfect because each of them still has limits. Designers have to consider the limits of each perceptual presentation method to find a way that shows their designs most effectively. To develop the perceptual presentation methods of interior design, researchers should focus on the helpful characteristics that are dynamic and stereoscopic.

  • PDF

A Study on the Dynamic Characteristics of Air Foil Bearings Using LS(Least Square)/IV(Instrumental Variable) Method (LS/IV 기법을 이용한 공기 포일 베어링의 동특성 계수에 관한 연구)

  • Jo, Jun-Hyeon;Ryu, Keun;Kim, Chang-Ho;Lee, Yong-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.677-684
    • /
    • 2004
  • This paper describes a method for identifying the dynamic characteristics of air foil bearings for high speed turbomachinerys with the LS/IV method. In fact identifying the characteristics of air foil bearings is very difficult work, and it is tried to identify it. Experiments were conducted to determine the structural dynamic and hydrodynamic characteristics of air foil bearings. Numerical predictions compare the static and dynamic force performances. The housing of the bearing on the journal was driven by the impact hammer which were used to simulate impact force acting on air foil bearings. The characteristics of air foil bearings were extracted from the frequency response function (FRF) by LS(Least Square) method and IV(Instrumental Variable) method. The experiment was tested at 0 rpm and $10000\sim16000rpm$. And the test results were introduced about the dynamic characteristics of air foil bearings, and also compared with theoritical results.

  • PDF

Dynamic Direct and Indirect Buckling Characteristics of Arch by Running Response Spectrum (연속 응답 스펙트럼 분석에 의한 아치의 동적 직접 및 간접 좌굴 특성)

  • Yun, Tae-Young;Kim, Seung-Deog
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.161-168
    • /
    • 2004
  • The dynamic instability of snapping phenomena has been studied by many researchers. Few papers deal with dynamic buckling under loads with periodic characteristics, and the behavior under periodic excitations is expected to be different from behavior under STEP excitations. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidally shaped arch structures are subjected to sinusoidally distributed excitations with pin-ends. The mechanisms of dynamic indirect snapping of shallow arches are especially investigated under not only STEP function excitations but also under sinusoidal harmonic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equation of motion, and examined by Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels.

  • PDF

Dynamic Buckling Characteristics of Arch Structures Considering Geometric Nonlinearity (기하학적 비선형을 고려한 정현형 아치 구조물의 동적 좌굴 특성)

  • 윤태영;김승덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.492-497
    • /
    • 2003
  • The dynamic instability for snapping phenomena has been studied by many researches. There is few paper which deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures subjected to sinusoidal distributed excitation with pin-ends. In this study, the dynamic direct snapping of shallow arches is investigated under not only STEP load excitation but also sinusoidal harmonic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equations of motion, and examined by the Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels.

  • PDF

Developement of dynamic modeling of rubber mount (고무 동특성 해석 기술 개발)

  • Lee, Shin-Bog;Jung, Jig-Han;Choi, Jae-Hwan;Lee, Young-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.87-91
    • /
    • 2013
  • Rubber Components have been playing important role for the isolation of noise and vibration of vehicle. This paper is presented the new method of dynamic modeling of rubber component for simulating the dynamic characteristics of it under the varing loading condition. Rubber dynamic model consists of the hyperelastic, viscoelastic and elasto-plastic characteristics of rubber. Dynamic proporties of rubber are calculated at each preload and frequency conditions, compared to test data, and evaluated the validity of rubber dynamic model. This technique is expected to understand and improve the characteristics of noise and vibration with relation to rubber components.

  • PDF