Formal Safety Assessment (FSA) has been mostly implemented on the hardware aspects of vessels. Although there are guidelines regarding human error FSAs, there have not been many assessments in such areas. To this end, this study seeks to use precedent studies for the safe operation of DP vessels, conducting an FSA regarding human error of DP LOP (Loss of Position) incidents. For this, the study referred to precedent studies for the frequency of DP LOP incidents caused by human errors, adding the severity of LOP incidents, and then applying them to the Bayesian network. As a result, the study was able to confirm that among DP LOP incidents caused by human errors, the drive-off from skill-based errors was 74.3% and the drive-off from unsafe supervision was 50.5%. Based on such results, RCOs (Risk Control Options) were devised through a brainstorming session with experts coming up with proposals including providing mandatory DPO training, installing DP simulator on the vessels, drawing up measures to understanding the procedures for safe operation of DP vessels. Moreover, it was found that mandatory DPO training is reasonable in terms of cost benefits and that while installing a DP simulator is not suitable in terms of cost benefits, it can significantly reduce risks when operating DP vessels.
텔레매틱스 서비스 중 가장 보편적으로 사용되는 것이 출발지에서 목적지까지의 최단 경로 안내 서비스이다. 본 논문에서는 미래 시간에 대한 교통흐름 예측 결과를 바탕으로 한 동적 최단 경로 탐색 시스템을 개발하고 실시간교통정보를 이용한 다양한 실험을 수행하여 성능을 분석하였다. 교통흐름 예측은 베이지안 네트워크 (Bayesian network)를 이용한 예측 시스템을 사용하였다. 동일한 출발지와 목적지에 대해 동적 최단 경로와 정적 및 누적 최단 경로를 탐색하고 각 경로에 대한 통행 시간을 계산하여 실제 최단 경로의 통행시간과 비교하였다. 실험 결과 75% 이상의 비율로 동적 최단 경로의 통행시간이 정적이나 누적 최단 경로의 통행시간보다 실제 최단경로의 통행시간에 가깝게 나타났다. 따라서 중간 경유지에 도착 예정인 시간대의 교통 흐름을 예측하여 동적 최단 경로를 구하는 것이 출발시간의 교통흐름을 모든 구간에 적용하여 최단 경로를 구하는 정적 최단 경로에 비해 더 정확한 교통정보를 제공하여 텔레매틱스 서비스의 품질을 향상시킬 수 있음을 보여 주었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.4157-4175
/
2020
Moving target defense, as a 'game-changing' security technique for network warfare, realizes proactive defense by increasing network dynamics, uncertainty and redundancy. How to select the best countermeasure from the candidate countermeasures to maximize defense payoff becomes one of the core issues. In order to improve the dynamic analysis for existing decision-making, a novel approach of selecting the optimal countermeasure using game theory is proposed. Based on the signal game theory, a multi-stage adversary model for dynamic defense is established. Afterwards, the payoffs of candidate attack-defense strategies are quantified from the viewpoint of attack surface transfer. Then the perfect Bayesian equilibrium is calculated. The inference of attacker type is presented through signal reception and recognition. Finally the countermeasure for selecting optimal defense strategy is designed on the tradeoff between defense cost and benefit for dynamic network. A case study of attack-defense confrontation in small-scale LAN shows that the proposed approach is correct and efficient.
본 논문에서는 휴먼 객체들의 이동 궤적 정보를 기반으로 휴먼 상호 행동을 인식하기 위한 새로운 모델을 제안한다. 복잡한 휴먼 상호 행동들은 의미있는 작은 단위로 분할될 수 있는데 이를 '부-상호행동'이라 하며, 이들을 표현하는 모델들의 순차적 연결 또는 네트워크로 상호 행동을 모델링한다. 제안하는 모델은 서로 다른 상호 행동들에 공통적으로 나타나는 부-상호 행동들을 공유하도록 함으로써 모델의 복잡도를 낮추어 매우 효율적이다. 상호 행동 네트워크 모델의 동작 분석 및 기존 방법과의 비교 실험을 통해 제안한 방법의 우수성을 확인할 수 있었다.
Software-Defined Network의 등장은 하드웨어적인 네트워크 기능들을 소프트웨어적인 형태의 모듈로 Controller에 보다 유연하게 적용시키도록 함으로써 전통적인 네트워크의 구조를 변화시키고 있다. 이러한 환경 속에서 최근 네트워크 트래픽에 대한 Quality of Service 및 자원관리와 같은 다양한 관점에서의 네트워크 관리정책에 대한 연구개발이 진행되고 있고, 이러한 관리정책을 뒷받침 할 수 있는 네트워크 모니터링에 대한 기법들 또한 제시되어 왔다. 이에 본 논문에서는 기계 학습 기법인 Naive Bayesian Classification을 통하여 Flow를 분류한 후, 전송 지연 측정 모듈을 통하여 효율적인 전송경로를 선정하는 기법을 제안한다. 이는 다양한 대역폭을 갖는 여러 경로들로 이루어진 네트워크상에서 효율적인 경로 분배 역할을 할 수 있고, 부하를 분산시킴으로써 보다 원활한 네트워크 환경 및 서비스 품질을 제공할 수 있다.
영상에 나타나는 자막은 영상과 관계가 있는 정보를 포함한다. 이러한 영상과 관련 있는 정보를 이용하기 위해 영상으로부터 자막을 추출하는 연구는 근래에 들어 활발히 진행되고 있다. 기존의 연구는 일정한 높이의 자막이나 획의 두께를 지닌 자막에서만 정상적인 작동을 한다. 본 논문에서는 일정 크기 이상의 자막에 대해서 적용할 수 있는 크기에 무관한 자막 추출 방법을 제안한다. 먼저, 자막 연결 객체의 패턴 추출을 위해서 자막이 포함된 영상을 수집하고, 신경망을 이용해서 자막의 패턴을 분석한다. 그 후로는 사전에 추출한 패턴을 이용하여 입력 영상에서 자막을 추출한다. 실험에 사용된 영상은 뉴스, 다큐멘터리, 쇼 프로그램과 같은 대중 방송에서 수집하였다. 실험 결과는 다양한 크기의 자막을 포함한 영상을 사용하여 실험하였고, 자막 추출의 결과는 찾아진 연결객체 중에 자막의 비율과 자막 중에 찾아진 자막의 비율로 분석하였다. 실험 결과를 보면 제안한 방법에 의해 다양한 크기의 자막을 추출할 수 있음을 보여준다.
최근 실내 환경에서 로봇의 서비스를륵 위해 영상 정보를 사용하기 인한 인구가 활발하다. 과거의 영상 처리 전근 방법은 미리 정의된 기하학적 모델에 기반 하기에, 이를 실내 환경과 같은 가변적인 환경에 적용할 시 성능이 저하된다. 이에 지식을 기반으로 불확실성을 해결하여 영상 인식 성능을 높이기 위한 다양한 연구가 진행되어 왔다. 본 논문에서는 실내에서 활동하는 서비스 로봇의 물체 인식 성능을 향상시키기 위해, 대상 물체가 다른 물체에 의서 가려져 있는 경우 대상물체의 존재 여부를 추론하기 위한 베이지안 네트워크 모델링 방법을 제안한다. 제안하는 방법은 물체간이 관계를 모델링하여 발견된 물체를 통해 대상 물체를 추론할 수 있게 하였다. 이를 위해 작은 규모의 베이지안 네트워크(프리미티브 베이지안 네트워크)를 위한 설계 방법을 정의하고 이를을 다시 상황에 맞게 결합하였다. 실험은 설계된 모델의 성능을 검증하기 위해 수행되었는데, 5가지 장소에서 $82.8\%$의 정확도를 보여주었다.
영상을 분석하여 얻은 증거를 바탕으로 장면의 의미를 추론하고 해석하는 것을 시각 기반 장면 이해라고 하며, 최근 인과적인 판단 및 추론 과정을 모델링하기에 유리한 베이지안 네트워크(BN)를 이용한 확률적인 접근 방법이 활발히 연구되고 있다. 하지만 실제 환경은 변화가 많고 불확실하기 때문에 의미 있는 증거를 충분히 확보하기 어려울 뿐만 아니라 전문가에 의한 설계로 유지하기 어렵다. 본 논문에서는 증거 및 학습 데이타가 부족한 장면인식 문제에서 효율적인BN 구조로 계산 복잡도가 줄어들고 정확도는 향상될 수 있는 BN 학습방법을 제안한다. 이 방법은 추론 대상 환경의 도메인 지식을 온톨로지로 표현하고 이를 제한적으로 사용하여 효율적인 계층구조의 BN을 구성한다. 제안하는 방법의 평가를 위하여 9종류의 환경에서 90장의 영상을 수집하고 레이블링하여 실험하였다. 실험 결과, 제안하는 방법은 증거의 수가 적은 불확실한 환경에서도 좋은 성능을 내고 학습의 복잡도가 줄어듦을 확인할 수 있었다.
본 논문에서는 얼굴 표정에서 나타나는 동적인 정서상태 변화를 고려한 얼굴 영상 기반 정서 인식 연구를 제안한다. 본 연구는 얼굴 영상 기반 정서적 특징 검출 및 분석 단계와 정서 상태 분류/인식 단계로 구분할 수 있다. 세부 연구의 구성 중 첫 번째는 Facial Action Units (FAUs)과 결합한 Active Shape Model (ASM)을 이용하여 정서 특징 영역 검출 및 분석기법의 제안이며, 두 번째는 시간에 따른 정서 상태의 동적 변화를 고려한 정확한 인식을 위하여 Hidden Markov Model(HMM) 형태의 Dynamic Bayesian Network를 사용한 정서 상태 분류 및 인식기법의 제안이다. 또한, 최적의 정서적 상태 분류를 위한 HMM의 파라미터 학습 시 Harmony Search (HS) 알고리즘을 이용한 휴리스틱 최적화 과정을 적용하였으며, 이를 통하여 동적 얼굴 영상 변화를 기반으로 하는 정서 상태 인식 시스템을 구성하고 그 성능의 향상을 도모하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.