• 제목/요약/키워드: dynamic bayesian network

검색결과 66건 처리시간 0.028초

A Study on FSA Application for Human Errors of Dynamic Positioning Vessels Incidents

  • Chae, Chong-Ju
    • 한국항해항만학회지
    • /
    • 제41권5호
    • /
    • pp.259-268
    • /
    • 2017
  • Formal Safety Assessment (FSA) has been mostly implemented on the hardware aspects of vessels. Although there are guidelines regarding human error FSAs, there have not been many assessments in such areas. To this end, this study seeks to use precedent studies for the safe operation of DP vessels, conducting an FSA regarding human error of DP LOP (Loss of Position) incidents. For this, the study referred to precedent studies for the frequency of DP LOP incidents caused by human errors, adding the severity of LOP incidents, and then applying them to the Bayesian network. As a result, the study was able to confirm that among DP LOP incidents caused by human errors, the drive-off from skill-based errors was 74.3% and the drive-off from unsafe supervision was 50.5%. Based on such results, RCOs (Risk Control Options) were devised through a brainstorming session with experts coming up with proposals including providing mandatory DPO training, installing DP simulator on the vessels, drawing up measures to understanding the procedures for safe operation of DP vessels. Moreover, it was found that mandatory DPO training is reasonable in terms of cost benefits and that while installing a DP simulator is not suitable in terms of cost benefits, it can significantly reduce risks when operating DP vessels.

교통흐름 예측 결과틀 적용한 동적 최단 경로 탐색 (A dynamic Shortest Path Finding with Forecasting Result of Traffic Flow)

  • 조미경
    • 한국정보통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.988-995
    • /
    • 2009
  • 텔레매틱스 서비스 중 가장 보편적으로 사용되는 것이 출발지에서 목적지까지의 최단 경로 안내 서비스이다. 본 논문에서는 미래 시간에 대한 교통흐름 예측 결과를 바탕으로 한 동적 최단 경로 탐색 시스템을 개발하고 실시간교통정보를 이용한 다양한 실험을 수행하여 성능을 분석하였다. 교통흐름 예측은 베이지안 네트워크 (Bayesian network)를 이용한 예측 시스템을 사용하였다. 동일한 출발지와 목적지에 대해 동적 최단 경로와 정적 및 누적 최단 경로를 탐색하고 각 경로에 대한 통행 시간을 계산하여 실제 최단 경로의 통행시간과 비교하였다. 실험 결과 75% 이상의 비율로 동적 최단 경로의 통행시간이 정적이나 누적 최단 경로의 통행시간보다 실제 최단경로의 통행시간에 가깝게 나타났다. 따라서 중간 경유지에 도착 예정인 시간대의 교통 흐름을 예측하여 동적 최단 경로를 구하는 것이 출발시간의 교통흐름을 모든 구간에 적용하여 최단 경로를 구하는 정적 최단 경로에 비해 더 정확한 교통정보를 제공하여 텔레매틱스 서비스의 품질을 향상시킬 수 있음을 보여 주었다.

SOCMTD: Selecting Optimal Countermeasure for Moving Target Defense Using Dynamic Game

  • Hu, Hao;Liu, Jing;Tan, Jinglei;Liu, Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4157-4175
    • /
    • 2020
  • Moving target defense, as a 'game-changing' security technique for network warfare, realizes proactive defense by increasing network dynamics, uncertainty and redundancy. How to select the best countermeasure from the candidate countermeasures to maximize defense payoff becomes one of the core issues. In order to improve the dynamic analysis for existing decision-making, a novel approach of selecting the optimal countermeasure using game theory is proposed. Based on the signal game theory, a multi-stage adversary model for dynamic defense is established. Afterwards, the payoffs of candidate attack-defense strategies are quantified from the viewpoint of attack surface transfer. Then the perfect Bayesian equilibrium is calculated. The inference of attacker type is presented through signal reception and recognition. Finally the countermeasure for selecting optimal defense strategy is designed on the tradeoff between defense cost and benefit for dynamic network. A case study of attack-defense confrontation in small-scale LAN shows that the proposed approach is correct and efficient.

동적 확률 모델 네트워크 기반 휴먼 상호 행동 인식 (Hunan Interaction Recognition with a Network of Dynamic Probabilistic Models)

  • 석흥일;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.955-959
    • /
    • 2009
  • 본 논문에서는 휴먼 객체들의 이동 궤적 정보를 기반으로 휴먼 상호 행동을 인식하기 위한 새로운 모델을 제안한다. 복잡한 휴먼 상호 행동들은 의미있는 작은 단위로 분할될 수 있는데 이를 '부-상호행동'이라 하며, 이들을 표현하는 모델들의 순차적 연결 또는 네트워크로 상호 행동을 모델링한다. 제안하는 모델은 서로 다른 상호 행동들에 공통적으로 나타나는 부-상호 행동들을 공유하도록 함으로써 모델의 복잡도를 낮추어 매우 효율적이다. 상호 행동 네트워크 모델의 동작 분석 및 기존 방법과의 비교 실험을 통해 제안한 방법의 우수성을 확인할 수 있었다.

SDN 환경에서 효율적 Flow 전송을 위한 전송 지연 평가 기반 부하 분산 기법 연구 (Transmission Delay Estimation-based Forwarding Strategy for Load Distribution in Software-Defined Network)

  • 김도현;홍충선
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권5호
    • /
    • pp.310-315
    • /
    • 2017
  • Software-Defined Network의 등장은 하드웨어적인 네트워크 기능들을 소프트웨어적인 형태의 모듈로 Controller에 보다 유연하게 적용시키도록 함으로써 전통적인 네트워크의 구조를 변화시키고 있다. 이러한 환경 속에서 최근 네트워크 트래픽에 대한 Quality of Service 및 자원관리와 같은 다양한 관점에서의 네트워크 관리정책에 대한 연구개발이 진행되고 있고, 이러한 관리정책을 뒷받침 할 수 있는 네트워크 모니터링에 대한 기법들 또한 제시되어 왔다. 이에 본 논문에서는 기계 학습 기법인 Naive Bayesian Classification을 통하여 Flow를 분류한 후, 전송 지연 측정 모듈을 통하여 효율적인 전송경로를 선정하는 기법을 제안한다. 이는 다양한 대역폭을 갖는 여러 경로들로 이루어진 네트워크상에서 효율적인 경로 분배 역할을 할 수 있고, 부하를 분산시킴으로써 보다 원활한 네트워크 환경 및 서비스 품질을 제공할 수 있다.

신경회로망 제어기와 동적 베이시안 네트워크를 이용한 시변 및 비정치 확률시스템의 제어 (Control of Time-varying and Nonstationary Stochastic Systems using a Neural Network Controller and Dynamic Bayesian Network Modeling)

  • 조현철;이진우;이영진;이권순
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.930-938
    • /
    • 2007
  • 영상에 나타나는 자막은 영상과 관계가 있는 정보를 포함한다. 이러한 영상과 관련 있는 정보를 이용하기 위해 영상으로부터 자막을 추출하는 연구는 근래에 들어 활발히 진행되고 있다. 기존의 연구는 일정한 높이의 자막이나 획의 두께를 지닌 자막에서만 정상적인 작동을 한다. 본 논문에서는 일정 크기 이상의 자막에 대해서 적용할 수 있는 크기에 무관한 자막 추출 방법을 제안한다. 먼저, 자막 연결 객체의 패턴 추출을 위해서 자막이 포함된 영상을 수집하고, 신경망을 이용해서 자막의 패턴을 분석한다. 그 후로는 사전에 추출한 패턴을 이용하여 입력 영상에서 자막을 추출한다. 실험에 사용된 영상은 뉴스, 다큐멘터리, 쇼 프로그램과 같은 대중 방송에서 수집하였다. 실험 결과는 다양한 크기의 자막을 포함한 영상을 사용하여 실험하였고, 자막 추출의 결과는 찾아진 연결객체 중에 자막의 비율과 자막 중에 찾아진 자막의 비율로 분석하였다. 실험 결과를 보면 제안한 방법에 의해 다양한 크기의 자막을 추출할 수 있음을 보여준다.

서비스 로봇의 물체 탐색 성능 향상을 위한 베이지안 네트워크 결합 기반 물체 관계 모델링 (Object Relationship Modeling based on Bayesian Network Integration for Improving Object Detection Performance of Service Robots)

  • 송윤석;조성배
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.817-822
    • /
    • 2005
  • 최근 실내 환경에서 로봇의 서비스를륵 위해 영상 정보를 사용하기 인한 인구가 활발하다. 과거의 영상 처리 전근 방법은 미리 정의된 기하학적 모델에 기반 하기에, 이를 실내 환경과 같은 가변적인 환경에 적용할 시 성능이 저하된다. 이에 지식을 기반으로 불확실성을 해결하여 영상 인식 성능을 높이기 위한 다양한 연구가 진행되어 왔다. 본 논문에서는 실내에서 활동하는 서비스 로봇의 물체 인식 성능을 향상시키기 위해, 대상 물체가 다른 물체에 의서 가려져 있는 경우 대상물체의 존재 여부를 추론하기 위한 베이지안 네트워크 모델링 방법을 제안한다. 제안하는 방법은 물체간이 관계를 모델링하여 발견된 물체를 통해 대상 물체를 추론할 수 있게 하였다. 이를 위해 작은 규모의 베이지안 네트워크(프리미티브 베이지안 네트워크)를 위한 설계 방법을 정의하고 이를을 다시 상황에 맞게 결합하였다. 실험은 설계된 모델의 성능을 검증하기 위해 수행되었는데, 5가지 장소에서 $82.8\%$의 정확도를 보여주었다.

불확실한 장면의 효과적인 인식을 위한 베이지안 네트워크의 온톨로지 기반 제한 학습방법 (A Constrained Learning Method based on Ontology of Bayesian Networks for Effective Recognition of Uncertain Scenes)

  • 황금성;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권6호
    • /
    • pp.549-561
    • /
    • 2007
  • 영상을 분석하여 얻은 증거를 바탕으로 장면의 의미를 추론하고 해석하는 것을 시각 기반 장면 이해라고 하며, 최근 인과적인 판단 및 추론 과정을 모델링하기에 유리한 베이지안 네트워크(BN)를 이용한 확률적인 접근 방법이 활발히 연구되고 있다. 하지만 실제 환경은 변화가 많고 불확실하기 때문에 의미 있는 증거를 충분히 확보하기 어려울 뿐만 아니라 전문가에 의한 설계로 유지하기 어렵다. 본 논문에서는 증거 및 학습 데이타가 부족한 장면인식 문제에서 효율적인BN 구조로 계산 복잡도가 줄어들고 정확도는 향상될 수 있는 BN 학습방법을 제안한다. 이 방법은 추론 대상 환경의 도메인 지식을 온톨로지로 표현하고 이를 제한적으로 사용하여 효율적인 계층구조의 BN을 구성한다. 제안하는 방법의 평가를 위하여 9종류의 환경에서 90장의 영상을 수집하고 레이블링하여 실험하였다. 실험 결과, 제안하는 방법은 증거의 수가 적은 불확실한 환경에서도 좋은 성능을 내고 학습의 복잡도가 줄어듦을 확인할 수 있었다.

Harmony Search 알고리즘 기반 HMM 구조 최적화에 의한 얼굴 정서 인식 시스템 개발 (Development of Facial Emotion Recognition System Based on Optimization of HMM Structure by using Harmony Search Algorithm)

  • 고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.395-400
    • /
    • 2011
  • 본 논문에서는 얼굴 표정에서 나타나는 동적인 정서상태 변화를 고려한 얼굴 영상 기반 정서 인식 연구를 제안한다. 본 연구는 얼굴 영상 기반 정서적 특징 검출 및 분석 단계와 정서 상태 분류/인식 단계로 구분할 수 있다. 세부 연구의 구성 중 첫 번째는 Facial Action Units (FAUs)과 결합한 Active Shape Model (ASM)을 이용하여 정서 특징 영역 검출 및 분석기법의 제안이며, 두 번째는 시간에 따른 정서 상태의 동적 변화를 고려한 정확한 인식을 위하여 Hidden Markov Model(HMM) 형태의 Dynamic Bayesian Network를 사용한 정서 상태 분류 및 인식기법의 제안이다. 또한, 최적의 정서적 상태 분류를 위한 HMM의 파라미터 학습 시 Harmony Search (HS) 알고리즘을 이용한 휴리스틱 최적화 과정을 적용하였으며, 이를 통하여 동적 얼굴 영상 변화를 기반으로 하는 정서 상태 인식 시스템을 구성하고 그 성능의 향상을 도모하였다.