• 제목/요약/키워드: dynamic analysis framework

검색결과 288건 처리시간 0.026초

지역특성화를 이용한 수산가공품의 개발 프레임워크 (A Development Framework of Processed Fishery Products Using Regional Specialization)

  • 김진백
    • 수산경영론집
    • /
    • 제52권3호
    • /
    • pp.1-14
    • /
    • 2021
  • The proportions of both the fishery industry and the gross regional domestic product in the national economy are gradually decreasing. If high value-added processed fishery products suitable for regional characteristics are developed, these proportions can be improved. In pursuit of this, it is first necessary to discover processed fishery products specialized in each region and then establish a development framework for them. In this study, location coefficient was used to find processed fishery products specialized in each region. Then, dynamic shift-share analysis was used to establish a development framework which consisted of four development types of processed fishery products. Based on the magnitudes of the industrial mix effect and the regional shift effect, the supporting strategy directions were proposed for four development types of processed fishery products. The supporting strategy directions were all focused on revitalizing the local economy.

Nonlinear dynamic response analysis of a long-span suspension bridge under running train and turbulent wind

  • Wang, S.Q.;Xia, H.;Guo, W.W.;Zhang, N.
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.309-320
    • /
    • 2010
  • With taking the geometric nonlinearity of bridge structure into account, a framework is presented for predicting the dynamic responses of a long-span suspension bridge subjected to running train and turbulent wind. The nonlinear dynamic equations of the coupled train-bridge-wind system are established, and solved with the Newmark numerical integration and direct interactive method. The corresponding linear and nonlinear processes for solving the system equation are described, and the corresponding computer codes are written. The proposed framework is then applied to a schemed long-span suspension bridge with the main span of 1120 m. The whole histories of the train passing through the bridge under turbulent wind are simulated, and the dynamic responses of the bridge are obtained. The results demonstrate that the geometric nonlinearity does not influence the variation tendency of the bridge displacement histories, but the maximum responses will be changed obviously; the lateral displacement of bridge are more sensitive to the wind than the vertical ones; compared with wind velocity, train speed affects the vertical maximum responses a little more clearly.

Regime 탐지 분석을 이용한 동적 자산 배분 기법 (Dynamic Asset Allocation by Applying Regime Detection Analysis)

  • 김우창
    • 대한산업공학회지
    • /
    • 제38권4호
    • /
    • pp.258-261
    • /
    • 2012
  • In this paper, I propose a new asset allocation framework to cope with the dynamic nature of the financial market. The investment performance can be much improved by protecting the capital from the market crashes, and such crashes can be pre-identified with high probabilities by regime detection analysis via a specialized unsupervised machine learning technique.

A Dynamic Price Formation System and Its Welfare Analysis in Quantity Space: An Application to Korean Fish Markets

  • Park, Hoan-Jae
    • 수산경영론집
    • /
    • 제41권2호
    • /
    • pp.107-133
    • /
    • 2010
  • As policy makers are often concerned about dynamic effects of demand behavior and its welfare analysis by quantity changes, the paper shows how dynamic price formation systems can be built up to analyze the effect of policy options to the markets dynamically. The paper develops dynamic model of price formation for fish from the intertemporal optimization of the consumer choice problem. While the resulting model has a similar form of the error correction types of dynamic price formation system, it provides the rational demand behavior contrary to the myopic behavior of error correction demand models. The paper also develops appropriate tools of dynamic welfare analysis in quantity space using only short-run demand estimates both theoretically and empirically as a first attempt in the literature of price formation and fisheries. The empirical results of Korean fish markets show that the dynamic model and the welfare measures are reasonably plausible. The methodology and theory of this research can be applied and extended to the commodity aggregation, dynamic demand estimation, and dynamic welfare effects of regulation in the similar framework. Thus, it is hoped that this will enhance its applications to the demand-side economics.

Developing a National Data Metrics Framework for Learning Analytics in Korea

  • RHA, Ilju;LIM, Cheolil;CHO, Young Hoan;CHOI, Hyoseon;YUN, Haeseon;YOO, Mina;Jeong Eui-Suk
    • Educational Technology International
    • /
    • 제18권1호
    • /
    • pp.1-25
    • /
    • 2017
  • Educational applications of big data analysis have been of interest in order to improve learning effectiveness and efficiency. As a basic challenge for educational applications, the purpose of this study is to develop a comprehensive data set scheme for learning analytics in the context of digital textbook usage within the K-12 school environments of Korea. On the basis of the literature review, the Start-up Mega Planning model of needs assessment methodology was used as this study sought to come up with negotiated solutions for different stakeholders for a national level of learning metrics framework. The Ministry of Education (MOE), Seoul Metropolitan Office of Education (SMOE), and Korean Education and Research Information Service (KERIS) were involved in the discussion of the learning metrics framework scope. Finally, we suggest a proposal for the national learning metrics framework to reflect such considerations as dynamic education context and feasibility of the metrics into the K-12 Korean schools. The possibilities and limitations of the suggested framework for learning metrics are discussed and future areas of study are suggested.

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

비협조 동적게임이론을 이용한 경쟁적 전력시장의 발전기 보수계획 전략 분석 (An Improved Generation Maintenance Strategy Analysis in Competitive Electricity Markets Using Non-Cooperative Dynamic Game Theory)

  • 김진호;박종배;김발호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권9호
    • /
    • pp.542-549
    • /
    • 2003
  • In this paper, a novel approach to generator maintenance scheduling strategy in competitive electricity markets based on non-cooperative dynamic game theory is presented. The main contribution of this study can be considered to develop a game-theoretic framework for analyzing strategic behaviors of generating companies (Gencos) from the standpoints of the generator maintenance-scheduling problem (GMP) game. To obtain the equilibrium solution for the GMP game, the GMP problem is formulated as a dynamic non-cooperative game with complete information. In the proposed game, the players correspond to the profit-maximizing individual Gencos, and the payoff of each player is defined as the profits from the energy market. The optimal maintenance schedule is defined by subgame perfect equilibrium of the game. Numerical results for two-Genco system by both proposed method and conventional one are used to demonstrate that 1) the proposed framework can be successfully applied in analyzing the strategic behaviors of each Genco in changed markets and 2) both methods show considerably different results in terms of market stability or system reliability. The result indicates that generator maintenance scheduling strategy is one of the crucial strategic decision-makings whereby Gencos can maximize their profits in a competitive market environment.

Robust seismic retrofit design framework for asymmetric soft-first story structures considering uncertainties

  • Assefa Jonathan Dereje;Jinkoo Kim
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.249-260
    • /
    • 2023
  • The uncertainties involved in structural performances are of importance when the optimum number and property of seismic retrofit devices are determined. This paper proposes a seismic retrofit design framework for asymmetric soft-first-story buildings, considering uncertainties in the soil condition and seismic retrofit device. The effect of the uncertain parameters on the structural performance is used to find a robust and optimal seismic retrofit solution. The framework finds a robust and optimal seismic retrofit solution by finding the optimal locations and mechanical properties of the seismic retrofit device for different realizations of the uncertain parameters. The structural performance for each realization is computed to evaluate the effect of the uncertainty parameters on the seismic performance. The framework utilizes parallel processing to decrease the computationally intensive nonlinear dynamic analysis time. The framework returns a robust design solution that satisfies the given limit state for every realization of the uncertain parameters. The proposed framework is applied to the seismic retrofit design of a five-story asymmetric soft-first-story case study structure retrofitted with a viscoelastic damper. Robust optimal parameters for retrofitting a structure to satisfy the limit state for the different realizations of the uncertain parameter are found using the proposed framework. According to the performance evaluation results of the retrofitted structure, the developed framework is proved effective in the seismic retrofit of the asymmetric structure with inherent uncertainties.

이산 사건 모델링 및 시뮬레이션을 이용한 교통 흐름 분석 방법론 (Traffic Flow Analysis Methodology Using the Discrete Event Modeling and Simulation)

  • 이자옥;지승도
    • 대한교통학회지
    • /
    • 제14권1호
    • /
    • pp.101-116
    • /
    • 1996
  • Increased attention has been paid in recent years to the need of traffic management for alleviating urban traffic congestion. This paper presents a discrete event modeling and simulation framework for analyzing the traffic flow. Traffic simulation models can be classified as being either microscopic and macroscopic models. The discrete event modeling and simulation technique can be basically employed to describe the macroscopic traffic simulation model. To do this, we have employed the System Entity Structure/Model Base (SES/MB) framework which integrates the dynamic-based formalism of simulation with the symbolic formalism of AI. The SES/MB framework supports to hierarchical, modular discrete event modeling and simulation environment. We also adopt the Symbolic DEVS (Discrete Event System Specification) to developed the automated analysis methodology for generating optimal signal light policy. Several simulation tests will demonstrates the techniques.

  • PDF

The accuracy of fragility curves of the steel moment-resisting frames and SDOF systems

  • Yaghmaei-Sabegh, Saman;Jafari, Ali;Eghbali, Mahdi
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.243-259
    • /
    • 2021
  • In the present paper, a Monte Carlo-based framework is developed to investigate the accuracy and reliability of analytical fragility curves of steel moment-resisting frames and simple SDOF systems. It is also studied how the effectiveness of incremental dynamic analysis (IDA) and multiple stripes analysis (MSA) approaches, as two common nonlinear dynamic analysis methods, are influenced by the number of records and analysis stripes in fragility curves producing. Results showed that the simple SDOF systems do not provide accurate and reliable fragility curves compared with realistic steel moment-resisting structures. It is demonstrated that, the effectiveness of nonlinear dynamic analysis approaches is dependent on the fundamental period of structures, where in short-period structures, IDA is found to be more effective approach compared with MSA. This difference between the effectiveness of two analysis approaches decreases as the fundamental period of structures become longer. Using of 2 or 3 analysis stripes in MSA approach leads to significant inaccuracy and unreliability in the estimated fragility curves. Additionally, 15 number of ground motion records is recommended as a threshold of significant unreliability in estimated fragility curves, constructed by MSA.