• Title/Summary/Keyword: dynamic OD matrix estimation

Search Result 4, Processing Time 0.02 seconds

Development of a quasi-dynamic origin/destination matrix estimation model by using PDA and its application (통행 단말기 정보를 이용한 동적 기종점 통행량 추정모형 개발 및 적용에 관한 연구)

  • Lim, Yong-Taek;Choo, Sang-Ho;Kang, Min-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.6
    • /
    • pp.123-132
    • /
    • 2008
  • Dynamic origin-destination (OD) trip matrix has been widely used for transportation fields such as dynamic traffic assignment, traffic operation and travel demand management, which needs precise OD trip matrix to be collected. This paper presents a quasi-dynamic OD matrix estimation model and applies it to real road network for collecting the dynamic OD matrix. The estimation model combined with dynamic traffic assignment program, DYNASMART-P, is based on GPS embedded in PDA, which developed for collecting sample dynamic OD matrix. The sample OD matrix should be expanded by the value of optimal sampling ratio calculated from minimization program. From application to real network of Jeju, we confirm that the model and its algorithm produce a reasonable solution.

Solution Methods for OD Trip Estimation in Stochastic Assignment (확률적 통행배정하에서 기종점 통행량추정 모형의 개발)

  • Im, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.4 s.90
    • /
    • pp.149-159
    • /
    • 2006
  • Traditional trip tables are estimated through large-scale surveys such as household survey, roadside interviews, and license Plate matching. These methods are, however, expensive and time consuming. This paper presents two origin-destination (OD) trip matrix estimation methods from link traffic counts in stochastic assignment, which contains perceived errors of drivers for alternatives. The methods are formulated based on the relation between link flows and OD demands in logit formula. The first method can be expressed to minimize the difference between observed link flows and estimated flows, derived from traffic assignment and be solved by gradient method. The second method can be formulated based on dynamic process, which nay describe the daily movement patterns of drivers and be solved by a recursive equation. A numerical example is used for assessing the methods, and shows the performances and properties of the models.

A Novel Compressed Sensing Technique for Traffic Matrix Estimation of Software Defined Cloud Networks

  • Qazi, Sameer;Atif, Syed Muhammad;Kadri, Muhammad Bilal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4678-4702
    • /
    • 2018
  • Traffic Matrix estimation has always caught attention from researchers for better network management and future planning. With the advent of high traffic loads due to Cloud Computing platforms and Software Defined Networking based tunable routing and traffic management algorithms on the Internet, it is more necessary as ever to be able to predict current and future traffic volumes on the network. For large networks such origin-destination traffic prediction problem takes the form of a large under- constrained and under-determined system of equations with a dynamic measurement matrix. Previously, the researchers had relied on the assumption that the measurement (routing) matrix is stationary due to which the schemes are not suitable for modern software defined networks. In this work, we present our Compressed Sensing with Dynamic Model Estimation (CS-DME) architecture suitable for modern software defined networks. Our main contributions are: (1) we formulate an approach in which measurement matrix in the compressed sensing scheme can be accurately and dynamically estimated through a reformulation of the problem based on traffic demands. (2) We show that the problem formulation using a dynamic measurement matrix based on instantaneous traffic demands may be used instead of a stationary binary routing matrix which is more suitable to modern Software Defined Networks that are constantly evolving in terms of routing by inspection of its Eigen Spectrum using two real world datasets. (3) We also show that linking this compressed measurement matrix dynamically with the measured parameters can lead to acceptable estimation of Origin Destination (OD) Traffic flows with marginally poor results with other state-of-art schemes relying on fixed measurement matrices. (4) Furthermore, using this compressed reformulated problem, a new strategy for selection of vantage points for most efficient traffic matrix estimation is also presented through a secondary compression technique based on subset of link measurements. Experimental evaluation of proposed technique using real world datasets Abilene and GEANT shows that the technique is practical to be used in modern software defined networks. Further, the performance of the scheme is compared with recent state of the art techniques proposed in research literature.

Dynamic OD Estimation with Hybrid Discrete Choice of Traveler Behavior in Transportation Network (복합 통행행태모형을 이용한 동적 기.종점 통행량 추정)

  • Kim, Chae-Man;Jo, Jung-Rae
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.6 s.92
    • /
    • pp.89-102
    • /
    • 2006
  • The purpose of this paper is to develop a dynamic OD estimating model to overcome the limitation of depicting teal situations in dynamic simulation models based on static OD trip. To estimate dynamic OD matrix we used the hybrid discrete choice model(called the 'Demand Simulation Model'), which combines travel departure time with travel mode and travel path. Using this Demand Simulation Model, we deduced that the traveler chooses the departure time and mode simultaneously, and then choose his/her travel path over the given situation In this paper. we developed a hybrid simulation model by joining a demand simulation model and the supply simulation model (called LiCROSIM-P) which was Previously developed. We simulated the hybrid simulation model for dependent/independent networks which have two origins and one destination. The simulation results showed that AGtt(Average gap expected travel time and simulated travel time) did not converge, but average schedule delay gap converged to a stable state in transportation network consisted of multiple origins and destinations, multiple paths, freeways and some intersections controlled by signal. We present that the hybrid simulation model can estimate dynamic OD and analyze the effectiveness by changing the attributes or the traveler and networks. Thus, the hybrid simulation model can analyze the effectiveness that reflects changing departure times, travel modes and travel paths by demand management Policy, changing network facilities, traffic information supplies. and so on.