• Title/Summary/Keyword: dynamic DSC

Search Result 172, Processing Time 0.029 seconds

A Study on Transformation of Dynamic DSC Results into Isothermal Data for the Formation Kinetics of a PU Elastomer

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.52-56
    • /
    • 2018
  • The present study examines the transformation of dynamic DSC data into the equivalent isothermal data for the formation kinetics of a polyurethane elastomer. The reaction of 2'-dichloro-4,4'-methylenedianiline (MOCA) with a PTMG/TDI-based isocyanate prepolymer was evaluated. DSC measurement was performed in the dynamic scanning mode with several different heating rates to obtain the reaction thermograms. Then, the data was transformed into the isothermal data through a procedure based on Ozawa analysis. The main feature of this procedure was the transformation of $({\alpha}-T)_{\beta}$ curves from dynamic DSC into $({\alpha}-t)_T$ curves using the isoconversional $(t-T)_{\alpha}$ diagram. Validity was discussed for the relationship between the dynamic DSC data and the transformed isothermal results.

Implementation of DSC Model for Clay-pile Interface Under Dynamic Load (동하중을 받는 점토-파일 접촉면 거동모사를 위한 DSC 모델의 수치해석적 이용)

  • Park, Inn-Joon;Yoo, Ji-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.93-104
    • /
    • 2003
  • The Disturbed State Concept (DSC) model, with simplified unloading/reloading formulation, is implemented in a nonlinear dynamic finite element program fur porous media named DSC_DYN2D. In this research, the DSC constitutive model is utilized using the HiSS model for relative intact (RI) part and the critical state model for the fully adjusted (FA) part in the material. The general formulation for implementation is developed. The cyclic loading tests from the field load test data on a pile segment were numerically simulated using the finite element program DSC_DYN2D and compared with field measurements and those from the previous analysis with the HiSS model. The DSC predictions show improved agreement with the field behavior of the pile compared to those from the HiSS model. Overall, the computer procedure with the DSC model allows improved and realistic simulation of the complex dynamic soil-structure interaction problems.

Development of Modified Disturbed State Concept Model for Liquefaction Analysis (액상화 해석을 위한 수정교란상태개념 모델 개발)

  • Park, Keun-Bo;Choi, Jae-Soon;Park, Inn-Joon;Kim, Ki-Poong;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.35-51
    • /
    • 2008
  • In this paper, the application of the DSC model to the analysis of liquefaction potential is examined through experimental and analytical investigations. For more realistic description of dynamic responses of saturated sands, the DSC model was modified based on the dynamic effective stress path and excess pore pressure development. Both static and cyclic undrained triaxial tests were performed for sands with different relative densities and confining stresses. Based on test results, a classification of liquefaction phases in terms of the dynamic effective stress path and the excess pore pressure development was proposed and adopted into the modified DSC model. The proposed methods using the original and modified DSC models were compared with examples with different relative densities and confining stresses. Based on the comparisons between the predicted results using the original and modified DSC models and experimental data, the parameters required to define the model were simplified. It was also found that modified model more accurately simulate initial liquefaction and dynamic responses of soil under cyclic undrained triaxial tests.

Cure Kinetics of Epoxy/Diamine System Modified with Malononitrile by Barrett Method and Integral Method (Malononitrile에 의해 개질된 Epoxy/Diamine계의 경화반응 속도론: Barrett Method와 Integral Method)

  • Cheon, In-Suk;Don, Yun-Seung;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.574-580
    • /
    • 1994
  • This study is about cure kinetics of DGEBA/MDA/MN(malononitrile) system by Barrett method and Integral method using DSC dynamic run. Curing behavior was shown through DSC and the heat change involved in a reaction could be measured directly with DSC. The kinetic parameters such as activation energy, pre-exponential factor and reaction order were given by Barrett method and Integral method obtained in an assumption that the area of DSC enthalpic analysis curve was propotional to the enthalpic change.

  • PDF

A Study on Prediction of the Liquefaction Behavior of Saturated Sandy Soils Using DSC Constitutive Equation (DSC구성방정식을 이용한 포화사질토의 액상화 거동 예측)

  • 박인준;김수일;정철민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.201-208
    • /
    • 2000
  • In this study, the behavior of saturated sandy soils under dynamic loads - pore water pressure and effective stress - was investigated using Disturbed State Concept(DSC) model. The model parameters are evaluated from laboratory test data. During the process of loading and reverse loading, DSC model is utilized to trace strain-hardening and cyclic softening behavior. The procedure of back prediction proposed in this study are verified by comparing with laboratory test results. From the back prediction of pore water pressure and effective mean pressure under cyclic loading, excess pore water pressure increases up to initial effective confining pressure and effective mean pressure decrease close to zero in good greement with laboratory test results. Those results represent the liquefaction of saturated sandy soils under dynamic loads. The number of cycles at initial liquefaction using the model prediction is in good agreement with laboratory test results. Therefore, the results of this study state that the liquefaction of saturated sandy soils can be explained by the effective tress analysis.

  • PDF

Stability and non-stationary vibration analysis of beams subjected to periodic axial forces using discrete singular convolution

  • Song, Zhiwei;Li, Wei;Liu, Guirong
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.487-499
    • /
    • 2012
  • Dynamic instability of beams subjected to periodic axial forces is studied using the discrete singular convolution (DSC) method with the regularized Shannon's delta kernel. The principal regions of dynamic instability under different boundary conditions are examined in detail, and the non-stationary vibrations near the stability-instability critical regions have been investigated. It is found that the results obtained by using the DSC method are consistent with the analytical solutions, which shows that the DSC algorithm is suitable for the problems considered in this study. It was found that there is a narrow region of beat vibration existed in the vicinity of one side (${\theta}/{\Omega}$ > 1) of the boundaries of the instable region for each condition.

Modified Disturbed State Concept for Dynamic Behaviors of Fully Saturated Sands (포화사질토의 동적거동규명을 위한 수정 교란상태개념)

  • 최재순;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.107-114
    • /
    • 2003
  • There are many problems in the prediction of dynamic behaviors of saturated soils because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical constitutive models based on the effective stress concept have been proposed but most models hardly predict the excess pore water pressure and strain softening behaviors correctly In this study, the disturbed state concept (DSC) model proposed by Dr, Desai was modified to predict the saturated soil behaviors under the dynamic loads. Also, back-prediction program was developed for verification of modified DSC model. Cyclic triaxial tests were carried out to determine DSC parameters and test result was compared with the result of back-prediction. Through this research, it is proved that the proposed model based on the modified disturbed state concept can predict the realistic soil dynamic characteristics such as stress degradation and strain softening behavior according to dynamic process of excess pore water pressure.

  • PDF

Leak Sign on Dynamic-Susceptibility-Contrast Magnetic Resonance Imaging in Acute Intracerebral Hemorrhage

  • Park, Ji Kang;Hong, Dae Young;Jin, Sun Tak;Lee, Dong-Woo;Pyun, Hae Wook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.154-161
    • /
    • 2020
  • Purpose: A CT angiography spot sign (CTA-spot) is a significant predictor of the early expansion of an intracerebral hemorrhage (ICH-Ex). Dynamic-susceptibility-contrast magnetic resonance imaging (DSC-MRI) can track the real-time leaking of contrast agents. It may be able to indicate active bleeding, like a CTA-spot. Materials and Methods: From September 2014 to February 2017, we did non-contrast CT, CTA, and DSC-MRI examinations of seven patients with acute ICH. We investigated the time from symptom onset to the first contrast-enhanced imaging. We evaluated the time course of the contrast leak within the ICH at the source image of the DSC-MRI and the volume change of ICH between non-contrast CT and DSC-MRI. We compared the number of slices showing CTA-spots and DSC-MRI leaks. Results: The CTA-spot and DSC-MRI leak-sign were present in four patients, and two patients among those showed ICH-Ex. The time from the symptom onset to CTA or DSC-MRI was shorter for those with a DSC-MRI leak or CTA-spot than for three patients without either (70-130 minutes vs. 135-270 minutes). The leak-sign began earlier, lasted longer, and spread to more slices in the patients with ICH-Ex than in those without ICH-Ex. The number of slices of the DSC-MRI leak and the number of the CTA-spot were well correlated. Conclusion: DSC-MRI can demonstrate the leakage of GBCA within hyperacute ICH, showing the good contrast between hematoma and contrast. The DSC-MRI leakage sign could be related to the hematoma expansion in patients with ICH.

A Study on Effects of Vulcanization Systems on Cross-linking and Degradation Reactions of NR/CR Blends Using Dynamic DSC and TGA (Dynamic DSC와 TGA를 이용한 NR/CR 고무블렌드의 가황시스템이 가교 및 열화반응에 미치는 영향 연구)

  • Min, Byung-kwon;Park, DongRyul;Ahn, WonSool
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.169-173
    • /
    • 2009
  • Effects of variations sulfur/accelerator ratio on cross-linking and thermal degradation behavior of NR/CR rubber compounds were studied using both dynamic DSC and non-isothermal TGA. DSC thermograms of the given samples were obtained with several different heating rates, and after cross-liked in DSC, TGA thermograms with the same samples also obtained. Kissinger analysis was applied to assess the activation energies for the cross-linking and thermal decomposition processes. Results showed that the formation and thermal decomposition reaction of the samples occurred in the overall temperature range of $120{\sim}180^{\circ}C$ and $350{\sim}450^{\circ}C$, respectively, exhibiting that data could be well-fittable by Kissinger method. Furthermore, formation activation energy by DSC was estimated as $83.0{\pm}5.0kJ/mol$, which was much smaller than that of degradation by TGA, $147.0{\pm}2.0kJ/mol$. From these results, it was considered that, although variations of sulfur/accelerator ratio in the present experiments affected little on the formation mechanism and/or thermal degradation, they could play roles as the catalysts which lower the activation energy of formation. Because of stabilization after formation reaction, however, they have no more effects on the lowering the activation energy, showing higher values when decomposition, caused by main-chain scissions.

Disturbed State Modeling for Fully Saturated Sand under Dynamic Load

  • Park, Inn-Joon;Kim, Soo-Il
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.47-62
    • /
    • 1998
  • The disturbed state concept (DSC) proposed here is based on the idea that a deforming material element can be treated as a mixture of two constituent parts in the relative intact (Rl) and fully adjusted (FA) states, referred to as reference states. Based on this idea, DSC provides a unified constitutive model for the characteristics of saturated sands under cyclic loading. The model parameters for saturated sands are evaluated by using data from truly triaxial test device, The laboratory test results are also used for the verification of D SC model. In general, the model predictions are found to provide satisfactory correlation with the test results. From the results of this research, it can be stated that the DSC model is capable of characterizing the cyclic behavior of saturated sands under dynamic loading.

  • PDF