• Title/Summary/Keyword: dye equilibrium

Search Result 139, Processing Time 0.019 seconds

The Effect of Organic Solvent in the Dyeing of Silk Fiber (견섬유의 염색에 있어서 첨가용제의 영향( I ))

  • 황성민;윤남식;임용진;이동수;이인전
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.47-53
    • /
    • 1989
  • The effect of organic solvent in the dyeing of silk fiber by acid dye was investigated. Acetophenone and benzyl alcohol were shown to be the most effective for the rate of dyeing of silk fiber by Milling Cyanine 5R (C.I. Acid Blue 113), a milling type acid dye, but, with benzyl alcohol, the equilibrium dye uptake was much lower than that in the absence of it. In the presence of solvent, maximum dye uptake shifted to lower temperature than 6$0^{\circ}C$, while without solvent, it was shown at about $60^\circ{C}$. When dyed by Orange II (C.I. acid Orange 7) under same condition equilibrium dye uptake of silk fiber was lower than that for milling type acid dye, and in the presence of benzyl alcohol, still much lower uptake resulted. All these fact reveals that organic solvents in the solvent-assisted dyeing of silk fiber broaden micelle spacings too much, resulting in increased rate of dyeing, and decreased equilibrium dye uptake, contrary to wool.

  • PDF

Biosorption of Rhodamine B onto Waste Activated Sludge: Equilibrium and Kinetic Modelling (폐 활성슬러지를 이용한 Rhodamine B의 생체흡착:흡착평혀여 및 흡착속도 모델링)

  • Lee Chang-Han;Ahn Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.881-888
    • /
    • 2005
  • The biosorption of dye, Rhodamine B(Rh-B), onto waste activated sludge was investigated. The biosorption capacity and contact time were shown as a simulation of dye adsorption equilibrium and kinetics models. We observed that biosorption of Rh-B occurred rapidly less than 4 hr. These experimental data could be better fitted by a pseudo-second-order rate equation than a pseudo-first-order rate equation. The equilibrium dependence between biosorption capacity and initial concentration of Rh-B was estimated and it was found that the equilibrium data of biosorption were fitted by four kinds of model such as Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan model. The average percentage errors, $\varepsilon(\%)$, observed between experimental and predicted values by above each model were $21.19\%,\;9.97\%,\;10.10\%\;and\;11.76\%$, respectively, indicating that Freundlich and Redlich-Peterson model could be fitted more accrately than other models.

Dyeing Behavior of Low Temperature Plasma Treated Wool

  • Kan C.W.
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.262-269
    • /
    • 2006
  • In this paper, the effects of low temperature plasma (LTP) treatment on the dyeing properties of the wool fiber were studied. The wool fibers were treated with oxygen plasma and three types of dye that commonly used for wool dyeing, namely: (i) acid dye, (ii) chrome dye and (iii) reactive dye, were used in the dyeing process. For acid dyeing, the dyeing rate of the LTP-treated wool fiber was greatly increased but the final dyeing exhaustion equilibrium did not show any significant change. For chrome dyeing, the dyeing rate of the LTP-treated wool fiber was also increased but the final dyeing exhaustion equilibrium was only increased to a small extent. In addition, the rate of afterchroming process was similar to the chrome dyeing process. For the reactive dyeing, the dyeing rate of the LTP-treated wool fiber was greatly increased and also the final dyeing exhaustion equilibrium was increased significantly. As a result, it could conclude that the LTP treatment could improve the dyeing behavior of wool fiber in different dyeing systems.

Dyeing Property of Polyester in Byebath Containing Water and Water Miscible Organic Solvents (물/극성유기용매 혼합욕에서 폴리에스테르의 염색)

  • 김은아;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.1
    • /
    • pp.100-107
    • /
    • 1998
  • Polyester filaments were dyed with disperse dye in dyebath containing water and water miscible organic solvents . acetone, 1,4-dioxane, DMF. In case of Acetone and 1,4-dioxane, the equilibrium dyeuptake was maximun at the volume fraction 0.05. The equilibrium dye uptakes were decreased as volun~e fraction of organic solvents were increased. When the volume fractions of water miscible organic solvents were varied, dye uptake was increased constantly with dyeing time. In dyebath containing water and water miscible organicsolvent, the dyeuptake was increased quickly during initial 40∼ 60 min. and slowly increased there after. The slope of Ct/Coo to t was greater in dyebath containing water and water miscible organic solvents than dyebath containing water. The differences of the slope with volulne fractions of water miscible organic solvent were not shown big.

  • PDF

Thermodynamics of Reactive Dyes with Different Functional Groups (작용기의 종류에 따른 반응염색의 열역학)

  • 도성국
    • Textile Coloration and Finishing
    • /
    • v.10 no.3
    • /
    • pp.36-42
    • /
    • 1998
  • The dyeabilities of C.I. Reactive Blue 19(B19, MW ; 626), C.I. Reactive Blue 4(B4, MW ; 637) and C.I. Reactive Black 5(B5, MW : 991) were investigated. Initial dyeing rates were increased and the amount of dye on the fabric at equilibrium was decreased with temperature like other ordinary dyeing processes. Activation entropy$(\Delta{S}^*)$ was decreased because of loose bonding between dyestuffes and fiber molecules at transition state. It can be clarified that the entire reaction is exothermic and the number of molecular species at transition state becomes greater from decrease in activation enthalpy$(\Delta{H}^*)$ and the increase in activation free energy$(\Delta{G}^*)$ with temperature, respectively. The amount of B19 on the fabric at equilibrium was greater than that of B4, because B4 became unreactive towards textile substrates through hydrolysis. Due to the biggest size of the dye molecule, the reaction rate of B5 was the slowest but its difunctional group played an important role in achieving the greatest amount of dye on the fabric at equilibrium.

  • PDF

Sorption Equilibria of C. I. Disperse Yellow 54 Dye between Supercritical Carbon Dioxide and PTT and PET Textiles (초임계이산화탄소와 PTT및 PET섬유 사이에서 C. I. Disperse Yellow 54 염료의 수착평형)

  • Ihm, Bang-Hyun;Choi, Jun-Hyuck;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.173-179
    • /
    • 2007
  • In this study the amount of equilibrium sorption of C.I. Disperse Yellow 54 dye in the polymeric textiles such as PTT (poly(trimethylene terephthalate)) and PET (poly(ethylene terephthalate)) textiles was measured in the presence of supercritical carbon dioxide at different temperatures, pressures, and time. The amount of dye sorption increased with temperature and pressure in both PTT and PET textiles, but the increasing rate decreased with pressure. The PTT textile has much larger dye sorption than PET textile. The increasing rate of dye sorption decreased with time at same temperature and pressure for both PTT and PET textiles.

  • PDF

Preparation of Polymeric Metal Complex Containing Azo Dye Rotaxane

  • Kang, Won-Young;Park, Jong-S.
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • In this article, we synthesized an azo dye rotaxane containing bis(8-hydroxyquinoline) group and its polymeric metal complex with zinc. The azo dye rotaxane exhibits high pH sensitivity, solvatochromism and zinc (II) ion sensings in aqueous solution. These behaviors came from the tautomeric equilibrium between azo-hydrazone tautomers and the formation of extended conjugation. The structure of polymeric zinc complexed dye rotaxane was confirmed with NMR and FT-IR measurements. The existence of CD rings, provided by dye rotaxane formation, was found to be very beneficial in improving aqueous solubility of polymeric metal complex.

Alkaline Dyeing and Color Fastness of Polyester Fiber (폴리에스테르 섬유의 알칼리 염색과 견뢰도)

  • 정동석;오준석;이문철
    • Textile Coloration and Finishing
    • /
    • v.12 no.4
    • /
    • pp.248-255
    • /
    • 2000
  • Polyester fibers and fabrics have been dyed with disperse dyes in alkaline dyebath such as alkaline buffer and alkaline auxiliary(JPH-95) comparing a traditional acidic dyeing. After dyeing the samples were extracted with 100% DMF, and washing and rubbing fastnesses were measured. In dyeing at $100^\circ{C}$ the dyeing rate increased with decreasing fiber denier, regardless of dye baths, whereas the dyeing rates of the same denier fiber increased in the order of alkaline dyeing>acidic dyeing>JPH-95 dyeing. In dyeing at $130^\circ{C}$ the dyeing rate of PET fiber in JPH-95 dye bath decreased compared with the other two types of dye baths. In the time and temperature curve the dye uptake of JPH-95 dyeing was higher than the other two types of dye baths in the range of low temperature$(95~115^\circ{C})$. The equilibrium dye uptake increased in the order of 0.52d>2.04d>0.05d fiber. Washing fastness had no change in all three types of dye baths. But rubbing fastness was not good for alkaline dyeing except black dyes.

  • PDF

Biosorption of Methylene Blue from Aqueous Solution Using Xanthoceras sorbifolia Seed Coat Pretreated by Steam Explosion

  • Yao, Zeng-Yu;Qi, Jian-Hua
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.253-261
    • /
    • 2016
  • Xanthoceras sorbifolia seed coat (XSSC) is a processing residue of the bioenergy crop. This work aimed to evaluate the applicability of using the steam explosion to modify the residue for dye biosorption from aqueous solutions by using methylene blue as a model cationic dye. Equilibrium, kinetic and thermodynamic parameters for the biosorption of methylene blue on the steam-exploded XSSC (SE-XSSC) were evaluated. The kinetic data followed the pseudo-second-order model, and the rate-limiting step was the chemical adsorption. Intraparticle diffusion was one of the rate-controlling factors. The equilibrium data agreed well with the Langmuir isotherm, and the biosorption was favorable. The steam-explosion pretreatment strongly affected the biosorption in some respects. It reduced the adsorption rate constant and the initial sorption rate of the pseudo-second-order model. It enhanced the adsorption capacity of methylene blue at higher temperatures while reduced the capacity at lower ones. It changed the biosorption from an exothermic process driven by both the enthalpy and the entropy to an endothermic one driven by entropy only. It increased the surface area and decreased the pH point of zero charge of the biomass. Compared with the native XSSC, SE-XSSC is preferable to MB biosorption from warmer dye effluents.

Equilibrium and kinetic studies for the removal of cationic dye using banana pith

  • El-Maghraby, Azza;Taha, Nahla A.
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.217-230
    • /
    • 2014
  • The large quantity of green cull bananas has the potential of being used industrially and, thereby, to improve banana economics and eliminate the large environmental problem presented by banana waste. Wastewaters from textile, cosmetics, printing, dying, food colouring, and paper-making industries are polluted by dyes. The adsorption of basic dye by waste banana pith was investigated by varying dye concentrations, adsorbent dose, particle size and agitation rate. The adsorption capacity was found to be maximum value of removal by using 0.1 g of sorbent with particle size 1mm at mixing speed 200 rpm for initial concentration 25 mg/l to reach value of approximate 89%. The Langmuir, Temkin and Freundlich adsorption models were used for mathematical description of the adsorption equilibrium and it was found that experimental data fitted very well to these models except Langmuir model. Adsorption of dye was applied on (pseudo-first and pseudo-second-order kinetics), and the experimental data was more fitted to pseudo second order. The results of this study showed that banana pith could be employed as effective and low-cost materials for the removal of dyes from aqueous solutions.