• Title/Summary/Keyword: dye decolorization

Search Result 128, Processing Time 0.022 seconds

Decolorization and Biotransformation of Triphenylmethane Dye, Methyl Violet, by Aspergillus sp. Isolated from Ladakh, India

  • Kumar, C. Ganesh;Mongolla, Poornima;Basha, Anver;Joseph, Joveeta;Sarma, V.U.M.;Kamal, Ahmed
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.267-273
    • /
    • 2011
  • Methyl violet, used extensively in the commercial textile industry and as a biological stain, is a hazardous recalcitrant. Aspergillus sp. strain CB-TKL-1 isolated from a water sample from Tsumoriri Lake, Karzok, Ladakh, India, was found to completely decolorize methyl violet within 24 h when cultured under aerobic conditions at $25^{\circ}C$. The rate of decolorization was determined by monitoring the decrease in the absorbance maxima of the dye by UV-visible spectroscopy. The decolorization of methyl violet was optimal at pH 5.5 and $30^{\circ}C$ when agitated at 200 rpm. Addition of glucose or arabinose (2%) as a carbon source and sodium nitrate or soyapeptone (0.2%) as a nitrogen source enhanced the decolorization ability of the culture. Furthermore, the culture exhibited a maximum decolorization rate of methyl violet after 24 h when the C:N ratio was 10. Nine N-demethylated decolorized products of methyl violet were identified based on UV-visible spectroscopy, Fourier transform infrared (FTIR), and LC-MS analyses. The decolorization of methyl violet at the end of 24 h generated mono-, di-, tri-, tetra-, penta-, and hexa-N-demethylated intermediates of pararosaniline. The variation of the relative absorption peaks in the decolorized sample indicated a linear decrease of hexa-N-demethylated compounds to non-N-demethylated pararosaniline, indicating a stepwise N-demethylation in the decolorization process.

Biological Treatemnt of Dye Wastewater Using an Anaerobic-Aerobic System (혐기-호기 공정을 이용한 염료페수의 생물학적 처리)

  • 박영식;문정현;안갑환
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.569-576
    • /
    • 2002
  • Anaerobic/aerobic reactor system was used to treat a synthetic wastewater with glucose as carbon sources(0.38~2.29 kg COD/m3.day) and Acid Red 14(1.05 "24.00 g Acid Red 141m3.day, color degree of 570 ~ 1710). COD removal efficiency by the anaerobic stage in operation period were above 90 % organic loading rate of 0.38 ~ 2.29 kg COD/m3.day(except, adaptation period) and the removal efficiency of the whole system were above 96 %. The decolorization of the Acid Red 14 was through the alteration of the dye structure(or cleavage of the Azo bond) during the anaerobic treatment. In the A/A system, the anaerobic stage played an essential role in removing both color and COD. In addition it also improves biodegradability of dye f3r further aerobic treatment. After operation, average MLSS concentration of anaerobic sludge reactor, anaerobic fixed-bed reactor and aerobic fixed-bed reactor were 17100mg/L, 20000mg/L, and 10000mg/L, respectively.

Elimination of COD and Color of Dye by UV/H2O2, UV/TiO2 System (UV/H2O2, UV/TiO2 시스템에서 염료의 색도 및 COD 제거)

  • Kim, Kei-Woul;Park, Joung Mi;Sim, Su-Jin;Yee, Hi-Joung;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.51-56
    • /
    • 2000
  • The Photocatalytic decolorization and degradation of commercial dyes were studied using a batch reactor. Degussa P25 titanium dioxide and $H_2O_2$ were used as the photocatalyst and proved to be effective for dyes degradation when they were irradiated with UV light. The light source was a 20W low pressure mercury lamp. Three different kinds of dyes, such as direct dye(congo red), acid dye (acid black) and disperse dye(disperse blue) were tested. Extending the UV only treatment up to 120min, direct dye was decolorized to 60% and degraded to 30% as COD. On the other side, acid and disperse dyes were eliminated less than 10% as color and COD. But, color and COD were eliminated about 90% for all of the three dyes by $UV/H_2O_2$ system. And then the most effective decolorization was done for direct dye with 96% removal efficiency by $UV/TiO_2$ system at 120min with 500mg/L of $TiO_2$.

  • PDF

The Role of Enzymes Produced by White-Rot Fungus Irpex lacteus in the Decolorization of the Textile Industry Effluent

  • Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • The textile industry wastewater has been decolorized efficiently by the white rot fungus, Irpex lacteus, without adding any chemicals. The degree of the decolorization of the dye effluent by shaking or stationary cultures is 59 and 93%, respectively, on the 8th day. The higher level of manganese-dependent peroxidase (MnP) and non-specific peroxidase (NsP) was detected in stationary cultures than in the cultures shaken. Laccase activities were equivalent in both cultures and its level was not affected significantly by the culture duration. Neither lignin peroxidase (LiP) nor Remazol Brilliant Blue R oxidase (RBBR ox) was detected in both cultures. The absorbance of the dye effluent was significantly decreased by the stationary culture filtrate of 7 days in the absence of Mn (II) and veratryl alcohol. In the stationary culture filtrate, three or more additional peroxidase bands were detected by the zymogram analysis.

Isolation of Novel White-rot Fungus and Effect for Decolorization of Dye Wastewater (새로운 염색폐수(染色廢水) 색도(色度) 제거(除去) 백색부후균(白色腐朽菌)의 분리(分離) 및 색도(色度) 제거(除去) 효과(效果))

  • Nam, Youn-Ku;Kwon, Hyuk-Ku;Lee, Bong-Joon;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.381-385
    • /
    • 2006
  • For decolorization of synthetic dyes, One fungus(HUE05-1) which was isolated from textile wastewater collected from industrial complex in Korea showed excellent ability of removing synthetic dyes. This fungus was identified as Basidiomycetes species by Internal Transcribed Spacers (ITS) sequence. Isolated fungi. HUE05-1 completely decolorized all dyes in both solid and liquid condition. The decolorization results were Reactive Orange-16, 97.12%; Reactive Blue-19, 92.09%; Reactive Blue-49, 97.04%; Reactive Yellow-145, 95.53%; Acid Orange-10, 99.18%; Acid Violet-43, 98.73%; Acid Blue-350, 94.71% and Disperse Blue-106, 90.07%.

Microbe Isolation and Optimization for the Decolorization of Reactive Dye (반응성 염료의 색도 제거를 위한 균주 분리 및 최적화)

  • 신종철;최광근;전현희;김상용;이진원
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.200-205
    • /
    • 2004
  • For decolorization of various reactive dyes, 13 species of microbes were isolated from dyeing wastewater collected from Banweol industrial complex, Korea. Two strains among them showed good ability for removing celerity during the decolorization test with 5 different reactive dyes. And the optimal growth conditions were pH 7, 35$^{\circ}C$, yeast extract as nitrogen source, glucose as carbon source, and facultative anaerobic condition. As results, when Reactive Red 180 was used, 89 and 87% of decolorization efficiency were able to be obtained by using Bacillus anthracis and Bacillus cereus, respectively. Especially, Bacillus cereus showed good ability for decolorization of Reactive Blue 21, and the ratio was 76% Finally, it was considered that these two strains isolated in this study will be showed high decolorization ability to treat dyeing wastewater.

Decolorization of Rhodamine B Using UV/$TiO_2$ System (UV/$TiO_2$ 시스템을 이용한 Rhodamine B의 색도 제거)

  • 박영식;나영수;안갑환
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.59-64
    • /
    • 2002
  • The photocatalytic decolorization of the Rhodamine B (RhB) was studied using a UV/TiO$_2$ reactor. Yakuri titanium dioxide(anatase) was used as the suspended photocatalyst and proved to be effective for decolorization irradiated with UV light (254 mm). The photocatalyzed dioxide concentrations, light intensity and air flow rates. In 0.01 mM RhB, color could be completely photodegraded after 3 hours. Absorption spectrum of an aqueous solution containing RhB showed a continued diminution of the RhB concentration in the solution bulk : concomitantly, no new absorption peaks appeared. This confirmed the decolorization of RhB, i.e., the break up of the chromopore. The optimum loaded titanium dioxide for the decolorization was 0.75 g/(equation omitted). The light intensity showed exponential decay with distance. The decay of light intensity of RhB solution showed different tendency from TiO$_2$. These results suggested that the photocatalytic decolorization of dyes may be available method for decolorizing in wastewater.

Decolorization of Rhodamine B by Photo-Fenton Oxidation (광-펜톤 산화반응을 이용한 Rhodamine B의 탈색)

  • Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.274-280
    • /
    • 2007
  • The photochemical decolorization of Rhodamine B (RhB) in water has been carried out by photo-Fenton process. The effect of applied $H_2O_2$, $Fe^{2+}$ dose, solution pH and UV dose have been studied. The influence of constituent processes of photo-Fenton such as UV, $H_2O_2$ and Fenton has been investigated. Comparison of RhB removal was made between the photo-Fenton and $UV/H_2O_2$ process. The results obtained showed that the optimum dosage of $Fe^{2+}$ and $H_2O_2$ were 0.0031 mmol and 0.625 mol, respectively. pH 3 is found to be the optimum pH of for photo-Fenton process. pH and UV dose strongly influenced the decolorization of RhB in photo-Fenton process. The photo-Fenton and $UV/H_2O_2$ processes showed similar decolorization and seem to be appropriate for the decolorization of dye wastewater.

CNBr-activated Sepharose 4B에 고정화된 laccase에 의한 염료의 decolorization

  • Gwon, Sin;Kim, Eun-Jeong;Ryu, Won-Ryul;Jo, Mu-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.635-639
    • /
    • 2001
  • A laccase produced the Trametes sp. was immobilized on CNBr-activated Sepharose 4B(CS4B) and tested for repeated-batch and continuous decolorization of dye. After immobilization, the enzyme was active in wider pH and temperature range, and its heat stability was greatly improved compared to those of the free laccase. Immobilized laccase was efficient for both repeated-batch and contionuous decolorization.

  • PDF

Study of chemical coagulation conditions for a disperse red dye removal from aqueous solutions

  • Tiaiba, Mohammed;Merzouk, Belkacem;Mazour, Mohammed;Leclerc, Jean P.;Lapicque, Francois
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Coagulation process using aluminum sulfate ($Al_2(SO_4)_3$) and ferric chloride ($FeCl_3$) was employed as a treatment method for decolorization of a synthetic textile wastewater containing red dye in this paper. Factors such as initial pH, coagulant dosage, initial concentration, conductivity and mixing conditions that influence color removal efficiency were experimentally tested. It was found that $Al_2(SO_4)_3$ is more efficient than $FeCl_3$ as coagulant. When $40mgL^{-1}$ aluminum sulfate was used, results showed that color induced by the red dye was efficiently removed (> 90 %) and was obtained in a large range of initial pH from 4 to 8 with, and for a dye concentration lower than $235mg\;L^{-1}$. After addition of the coagulant, the medium had to be mixed for 30 min at 60 rpm, then allowed to settle for 40 min. The effects of water conductivity in the range $0.035-2.42mS\;cm^{-1}$ and dye concentration up to $380mg\;L^{-1}$ were also followed and discussed.