Browse > Article
http://dx.doi.org/10.4014/jmb.1011.11010

Decolorization and Biotransformation of Triphenylmethane Dye, Methyl Violet, by Aspergillus sp. Isolated from Ladakh, India  

Kumar, C. Ganesh (Chemical Biology Laboratory, Indian Institute of Chemical Technology)
Mongolla, Poornima (Chemical Biology Laboratory, Indian Institute of Chemical Technology)
Basha, Anver (Chemical Biology Laboratory, Indian Institute of Chemical Technology)
Joseph, Joveeta (Chemical Biology Laboratory, Indian Institute of Chemical Technology)
Sarma, V.U.M. (Natural Products Laboratory, Indian Institute of Chemical Technology)
Kamal, Ahmed (Chemical Biology Laboratory, Indian Institute of Chemical Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.3, 2011 , pp. 267-273 More about this Journal
Abstract
Methyl violet, used extensively in the commercial textile industry and as a biological stain, is a hazardous recalcitrant. Aspergillus sp. strain CB-TKL-1 isolated from a water sample from Tsumoriri Lake, Karzok, Ladakh, India, was found to completely decolorize methyl violet within 24 h when cultured under aerobic conditions at $25^{\circ}C$. The rate of decolorization was determined by monitoring the decrease in the absorbance maxima of the dye by UV-visible spectroscopy. The decolorization of methyl violet was optimal at pH 5.5 and $30^{\circ}C$ when agitated at 200 rpm. Addition of glucose or arabinose (2%) as a carbon source and sodium nitrate or soyapeptone (0.2%) as a nitrogen source enhanced the decolorization ability of the culture. Furthermore, the culture exhibited a maximum decolorization rate of methyl violet after 24 h when the C:N ratio was 10. Nine N-demethylated decolorized products of methyl violet were identified based on UV-visible spectroscopy, Fourier transform infrared (FTIR), and LC-MS analyses. The decolorization of methyl violet at the end of 24 h generated mono-, di-, tri-, tetra-, penta-, and hexa-N-demethylated intermediates of pararosaniline. The variation of the relative absorption peaks in the decolorized sample indicated a linear decrease of hexa-N-demethylated compounds to non-N-demethylated pararosaniline, indicating a stepwise N-demethylation in the decolorization process.
Keywords
Aspergillus; decolorization; dyes; methyl violet; N-demethylation; biotransformation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Ali, H., W. Ahmad, and T. Haq. 2009. Decolorization and degradation of malachite green by Aspergillus flavus and Alternaria solani. African J. Biotechnol. 8: 1574-1576.
2 Ali, N., A. Hameed, S. Ahmed, and A. G. Khan. 2008. Decolorization of structurally different textile dyes by Aspergillus niger SA1. World J. Microbiol. Biotechnol. 24: 1067-1072.   DOI   ScienceOn
3 Asad, S., M. A. Anoozegar, A. A. Pourbabaee, M. N. Sarbolouki, and S. M. Dastgheib. 2007. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour. Technol. 98: 2082-2088.   DOI   ScienceOn
4 Azmi, W., R. K. Sani, and U. C. Banerjee. 1998. Biodegradation of triphenylmethane dyes. Enzyme Microb. Technol. 22: 185-191.   DOI   ScienceOn
5 Bumpus, J. A. and B. J. Brock. 1988. Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54: 1143-1150.
6 Casas, N., T. Parella, T. Vicent, G. Caminal, and M. Sarra. 2009. Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere 75: 1344-1349.   DOI   ScienceOn
7 Michaels, G. B. and D. L. Lewis. 1985. Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations. Environ. Toxicol. Chem. 4: 45-50.   DOI
8 Cha, C.-J., D. R. Doerge, and C. E. Cerniglia. 2001. Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 67: 4358-4360.   DOI   ScienceOn
9 Chen, C. C., W. Zhao, J. G. Li, J. C. Zhao, H. Hidaka, and N. Serpone. 2002. Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous $TiO_{2}$ dispersion. Environ. Sci. Technol. 36: 3604-3611.   DOI   ScienceOn
10 Cheriaa, J. and A. Bakhrouf. 2009. Triphenylmethanes, malachite green and crystal violet dyes decolourisation by Sphingomonas paucimobilis. Ann. Microbiol. 59: 57-61.   DOI   ScienceOn
11 Michaels, G. B. and D. L. Lewis. 1986. Microbial transformation rates of azo and triphenylmethane dyes. Environ. Toxicol. Chem. 5: 161-166.   DOI
12 Nelson, C. R. and R. A. Hites. 1980. Aromatic amines in and near the Buffalo River. Environ. Sci. Technol. 14: 1147-1149.   DOI   ScienceOn
13 Parshetti, G., G. Saratale, A. Telke, and S. Govindwar. 2009. Biodegradation of hazardous triphenylmethane dye, methyl violet, by Rhizobium radiobacter (MTCC 8161). J. Basic Microbiol. 49: S36-S42.   DOI   ScienceOn
14 Jeong, M.-S., W.-D. Ji, B.-H. Kim, and Y.-G. Chung. 1998. Decolorizing characteristics of crystal violet by Enterobacter cloace MG82. Korean J. Appl. Microbiol. Biotechnol. 26: 269-273.
15 Ramya, M., B. Anusha, S. Kalavathy, and S. Devilakshmi. 2007. Biodecolorization and biodegradation of Reactive Blue by Aspergillus spp. African J. Biotechnol. 6: 1441-1445.
16 Sani, R. K. and U. C. Banerjee. 1999. Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme Microb. Technol. 24: 433-437.   DOI   ScienceOn
17 Wu, T., G. Liu, J. Zhao, H. Hidaka, and N. Serpone. 1988. Photoassisted degradation of dye pollutants. V. Self photooxidative transformation of rhodamine B under visible light irradiation in aqueous $TiO_{2}$ dispersions. J. Phys. Chem. B 102: 5845-5851.
18 Yatome, C., T. Ogawa, and M. Matsui. 1991. Degradation of crystal violet by Bacillus subtilis. J. Environ. Sci. Health A 26: 75-87.   DOI
19 Yatome, C., S. Yamada, T. Ogawa, and M. Matsui. 1993. Degradation of crystal violet by Nocardia corallina. Appl. Microbiol. Biotechnol. 38: 565-569.
20 Sarnaik, S. and P. Kanekar. 1999. Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402. Appl. Microbiol. Biotechnol. 52: 251-254.   DOI   ScienceOn
21 Kim, J.-D., J.-H. Yoon, Y.-H. Park, F. Kawai, H.-T. Kim, D.-W. Lee, and K.-H. Kang. 2002. Identification of Stenotrophomonas maltophila LK-24 and its degradability of crystal violet. J. Microbiol. Biotechnol. 12: 437-443.
22 Kwasniewska, K. 1985. Biodegradation of crystal violet (hexamethylp- rosaniline chloride) by oxidative red yeasts. Bull. Environ. Contam. Toxicol. 34: 323-330.   DOI   ScienceOn
23 Vasdev, K., R. C. Kuhad, and R. K. Saxena. 1995. Decolorization of triphenylmethane dyes by bird's nest fungus Cyathus bulleri. Curr. Microbiol. 30: 269-272.   DOI   ScienceOn
24 Diachenko, G. W. 1979. Determination of several industrial aromatic amines in fish. Environ. Sci. Technol. 13: 329-333.   DOI   ScienceOn
25 El-Naggar, M. A., S. A. El-Aasar, and K. I. Barakat. 2004. Bioremediation of crystal violet using air bubble bioreactor packed with Pseudomonas aeruginosa. Water Res. 38: 4313-4322.   DOI   ScienceOn
26 Fu, Y. and T. Viraraghavan. 2001. Fungal decolorization of dye wastewaters: A review. Bioresour. Technol. 79: 251-262.   DOI   ScienceOn
27 Jain, N., A. Kaur, D. Singh, and S. Dahiya. 2000. Degradation of acrylic red 2 B dye by Phanerochaete chrysosporium: Involvement of carbon and nitrogen source. J. Environ. Biol. 21: 179-183.
28 Selvam, K., K. Swaminathan, and K.-S. Chae. 2003. Decolorization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioresour. Technol. 88: 115-119.   DOI   ScienceOn
29 Swamy, J. and J. A. Ramsay. 1999. The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microb. Technol. 24: 130-137.   DOI   ScienceOn