• Title/Summary/Keyword: dust cloud

Search Result 134, Processing Time 0.022 seconds

A Study on The Effect of Humidity and Temperature of Hydroxy Propyl Methyl Cellulose Dust (Hydroxy Propyl Methyl Cellulose 분진의 습도와 온도에 대한 영향성 연구)

  • Lim Woo-Sub;Mok Yun-Soo;Choi Jae-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.65-69
    • /
    • 2004
  • This study was performed with Hartmann type dust explosion apparatus and Godbert-Greenwald furnace apparatus in order to research the effect of temperature and humidity affecting LEL, minimum ignition temperature of Hydroxy Propyl Methyl Cellulose. The experimental determinations in the range between $20^{\circ}C\;and\;60^{\circ}C$ of temperature was not affected $LEL(180g/m^3)$ but LEL showed $200g/m^3\;and\;250g/m^3\;at\;80^{|circ}C\;and\;100^{\circ}C$. As the change of humidity LEL was $180g/m^3\;for\;50\%,\;200g/m^3\;for\;60\%\;and\;250g/m^3\;for\;70\%$ but dust explosion didn't occur over $80\%$. The ignition temperature of HPMC dust clouds was increased as increasing of humidity. So, the minimum ignition temperatures at $50\%,\;60\%,\;70\%\;80\%$ of humidity was $363^{\circ}C,\;375^{\circ}C,\;397^{\circ}C,\;405^{\circ}C$.

CO OBSERVATIONS OF A HIGH LATITUDE HII REGION S73 WITH HIGH RESOLUTION AUTOCORRELATOR

  • LEE YOUNGUNG;CHUNG H.S.;KIM H.R.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.187-188
    • /
    • 1996
  • We have mapped $1 deg^2$ region toward a high latitude HII region S73 (l, b) = ($37^{\circ}.69$, $44^{\circ}.55$) and associated molecular cloud in $^{12}CO$ J = 1 - 0, and $^{13}CO$ J = 1 - 0, using the 3 mm SIS receiver on the 14 m telescope at Taeduk Radio Astronomy Observatory. A high resolution autocorrelator is used to resolve extremely narrow CO linewidths (FWHP < 1 km/s) of the molecular cloud. Though the linewidths are very narrow, it is found that there is systematic velocity gradient in the molecular gas associated with the H II region. Both of $^{12}CO$ and $^{13}CO$ averaged spectra are non-gaussian, and there are obvious blue wings in the spectra. It is remarkable that the linewidths at the blueshifted region are broader than those of the rest of the cloud. The CO emission does match well with the dust emission.

  • PDF

An Analysis of Aerosol Optical Properties around Korea using AERONET (지상원격관측(AERONET)을 통한 한반도 주변 에어로솔 광학특성 분석)

  • Kim, Byung-Gon;Kim, You-Joon;Eun, Seung-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.629-640
    • /
    • 2008
  • This study investigates long-term trends and characteristics of aerosol optical depth ($\tau_a$) and Angstrom exponent (${\AA}$) around Korea in order to understand aerosol effects on the regional climate change. The analysis period is mainly from 1999 to 2006, and the analysis sites are Anmyun and Gosan, the background monitoring sites in Korea, and two other sites of Xianghe in China and Shirahama in Japan. The annual variations of $\tau_a$ at Anmyun and Gosan have slightly systematic increasing and decreasing trends, respectively. $\tau_a$ at Anmyun shows more substantial variation, probably because of it's being closer and vulnerable to anthropogenic influence from China and/or domestic sources than Gosan. Both values at Gosan and Anmyun are approximately 1.5 times greater than those at Shirahama. The monthly variation of $\tau_a$ exhibits the highest values at late Spring and the lowest at late-Summer, which are thought to be associated with the accumulation of fine aerosol formed through the photochemical reaction before the Jangma period and the scavenging effect after the Jangma period, respectively. Meanwhile, the episode-average $\tau_a$ for the Yellow dust period increases 2 times greater than that for the non-Yellow dust period. A significant decrease in ${\AA}$ for the Yellow dust period is attributable to an increase in the loading of especially the coarse particles. Also we found no weekly periodicity of $\tau_a$'s, but distinct weekly cycle of $PM_{10}$ concentrations, such as an increase on weekdays and a decrease on weekends at Anmyun and Gosan. We expect these findings would help to initiate a study on aerosol-cloud interactions through the combination of surface aerosol and satellite remote sensing (MODIS, Calipso and CloudSat) in East Asia.

Capability of Accumulation Mode Aerosols Containing Black Carbon as CCN Observed during the PACDEX Campaign (PACDEX 캠페인 자료로 분석한 블랙카본을 포함한 축적모드 에어로솔의 구름응결핵 가능성)

  • Lee, Si-Hye;Ghim, Young-Sung;Kim, Sang-Woo;Yoon, Soon-Chang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.4
    • /
    • pp.380-391
    • /
    • 2010
  • Airborne in-situ measurements of aerosol/cloud number concentrations were analyzed to investigate the effects of aerosols on warm cloud formation in the Pacific Dust Experiment (PACDEX) during April and May 2007. In the air masses originating from the Asian continent, high concentrations of fine particles including black carbon (BC) were observed when compared to other regions. A strong correlation (r=0.88) between condensation nuclei (CN) having sizes ranging from 0.1 to 1.0 mm ($CN_{0.1-1.0}$) and cloud condensation nuclei (CCN) at 0.4% supersaturation ($CCN_{0.4%}$) suggests that most of the $CN_{0.1-1.0}$ can contribute to cloud formation. The possibility of a cloud droplet formation by BC particles was expected at the high water vapor mixing ratio (WVMR) and the abundance of water-soluble components at the low altitude less than 3 km.

Detection of Yellow Sand Dust over Northeast Asia using Background Brightness Temperature Difference of Infrared Channels from MODIS (MODIS 적외채널 배경 밝기온도차를 이용한 동북아시아 황사 탐지)

  • Park, Jusun;Kim, Jae Hwan;Hong, Sung Jae
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • The technique of Brightness Temperature Difference (BTD) between 11 and $12{\mu}m$ separates yellow sand dust from clouds according to the difference in absorptive characteristics between the channels. However, this method causes consistent false alarms in many cases, especially over the desert. In order to reduce these false alarms, we should eliminate the background noise originated from surface. We adopted the Background BTD (BBTD), which stands for surface characteristics on clear sky condition without any dust or cloud. We took an average of brightness temperatures of 11 and $12{\mu}m$ channels during the previous 15 days from a target date and then calculated BTD of averaged ones to obtain decontaminated pixels from dust. After defining the BBTD, we subtracted this index from BTD for the Yellow Sand Index (YSI). In the previous study, this method was already verified using the geostationary satellite, MTSAT. In this study, we applied this to the polar orbiting satellite, MODIS, to detect yellow sand dust over Northeast Asia. Products of yellow sand dust from OMI and MTSAT were used to verify MODIS YSI. The coefficient of determination between MODIS YSI and MTSAT YSI was 0.61, and MODIS YSI and OMI AI was also 0.61. As a result of comparing two products, significantly enhanced signals of dust aerosols were detected by removing the false alarms over the desert. Furthermore, the discontinuity between land and ocean on BTD was removed. This was even effective on the case of fall. This study illustrates that the proposed algorithm can provide the reliable distribution of dust aerosols over the desert even at night.

A Recent Dust Ejection from an Inner Mainbelt Asteroid

  • Ishiguro, Masateru;JeongAhn, Youngmin;Lee, Hee-Jae;Geem, Jooyeon;Kwon, Yuna G.;Seo, Jinguk;Im, Myungshin;Lee, Myung Gyoon;Pyo, Jeonghyun;Choi, Young-Jun;Yang, Hongu;Sekiguchi, Tomohiko;Nakamura, Akiko M.;Hasegawa, Sunao;Ohtsuka, Katsuhito;Moon, Hong-Kyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.63.3-63.3
    • /
    • 2019
  • Active asteroids are celestial bodies that distinctively have asteroid-like orbital elements but show comet-like activity. They exhibit the activities due to the sublimation of volatile ices, impacts with small objects or break-up by rapid rotations. As of 2019 February, 30 active asteroids are detected in the outer main belt (i.e., the semimajor axes a>2.5 au) while only 3 of them in the inner main belt (a<2.5 au), suggesting that sublimation of remaining icy volatiles can be one of the most fundamental mechanisms for the activities. A sudden activity of (6478) Gault was reported in early 2019. The asteroid was discovered in 1988 and has exhibited its inactive appearance until the end of last year. Soon after the report, we have conducted imaging observations using the Seoul National University Observatory 1.0-m telescope and the Korea Microlensing Telescope Network (KMTNet) to monitor the activity. The observed images showed a primary dust tail that consists of dust grains ejected early November in 2018. Later, another tail developed, indicating further dust ejection occurred around late December 2018. Our model simulation to reproduce the morphology of the dust cloud suggests that the slightly-curved primary dust tail results from a continuous dust ejection over weeks. The total mass of ejecta was estimated to XX kg (XX% of the asteroid mass). Such continuous dust ejection for the inner active asteroids was unexpected because ice might have already sublimated from subsurfaces of inner main belt. Based on our observational evidence, we will discuss how inner asteroids are activated and eject dust continuously.

  • PDF

An Estimation of Concentration of Asian Dust (PM10) Using WRF-SMOKE-CMAQ (MADRID) During Springtime in the Korean Peninsula (WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Lee, Kang-Yeol
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.276-293
    • /
    • 2011
  • In this study a modeling system consisting of Weather Research and Forecasting (WRF), Sparse Matrix Operator Kernel Emissions (SMOKE), the Community Multiscale Air Quality (CMAQ) model, and the CMAQ-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) model has been applied to estimate enhancements of $PM_{10}$ during Asian dust events in Korea. In particular, 5 experimental formulas were applied to the WRF-SMOKE-CMAQ (MADRID) model to estimate Asian dust emissions from source locations for major Asian dust events in China and Mongolia: the US Environmental Protection Agency (EPA) model, the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, and the Dust Entrainment and Deposition (DEAD) model, as well as formulas by Park and In (2003), and Wang et al. (2000). According to the weather map, backward trajectory and satellite image analyses, Asian dust is generated by a strong downwind associated with the upper trough from a stagnation wave due to development of the upper jet stream, and transport of Asian dust to Korea shows up behind a surface front related to the cut-off low (known as comma type cloud) in satellite images. In the WRF-SMOKE-CMAQ modeling to estimate the PM10 concentration, Wang et al.'s experimental formula was depicted well in the temporal and spatial distribution of Asian dusts, and the GOCART model was low in mean bias errors and root mean square errors. Also, in the vertical profile analysis of Asian dusts using Wang et al's experimental formula, strong Asian dust with a concentration of more than $800\;{\mu}g/m^3$ for the period of March 31 to April 1, 2007 was transported under the boundary layer (about 1 km high), and weak Asian dust with a concentration of less than $400\;{\mu}g/m^3$ for the period of 16-17 March 2009 was transported above the boundary layer (about 1-3 km high). Furthermore, the difference between the CMAQ model and the CMAQ-MADRID model for the period of March 31 to April 1, 2007, in terms of PM10 concentration, was seen to be large in the East Asia area: the CMAQ-MADRID model showed the concentration to be about $25\;{\mu}g/m^3$ higher than the CMAQ model. In addition, the $PM_{10}$ concentration removed by the cloud liquid phase mechanism within the CMAQ-MADRID model was shown in the maximum $15\;{\mu}g/m^3$ in the Eastern Asia area.

CHEMICAL DIAGNOSTICS OF THE MASSIVE STAR CLUSTER-FORMING CLOUD G33.92+0.11. IV. HIERARCHICAL STRUCTURE

  • Minh, Young Chol;Liu, Hauyu Baobab;Chen, Huei-Ru Vivien
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.3
    • /
    • pp.77-85
    • /
    • 2020
  • In the molecular cloud G33.92+0.11A, massive stars are forming sequentially in dense cores, probably due to interaction with accreted gas. Cold dense gas, which is likely the pristine gas of the cloud, is traced by DCN line and dust continuum emission. Clear chemical differences were observed in different source locations and for different velocity components in the same line of sight. Several distinct gas components coexist in the cloud: the pristine cold gas, the accreted dense gas, and warm turbulent gas, in addition to the star-forming dense clumps. Filaments of accreted gas occur in the northern part of the A1 and A5 clumps, and the velocity gradient along these features suggests that the gas is falling toward the cloud and may have triggered the most recent star formation. The large concentration of turbulent gas in the A2 clump seems to have formed mainly through disturbances from the outside.

Discovery of a Cloud Collision with the OMC-1

  • Kim, Kwang-Tae;Kim, Youngsik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.32.3-33
    • /
    • 2017
  • Utilizing both the existing observational data for Orion A and the TRAO $^{13}CO$, $^{12}CO$ data for $1^{\circ}{\times}1^{\circ}$ region centered on M42 collected in 2012, we found a clear piece of evidence for a collision of a cloud with the OMC-1. This cloud has a shape like a long cylinder of ${\sim}0.1pc{\times}2pc$ in size, and has a well developed train of clumps of about a few solar masses, and is situated in the dark dust complex between M42 and M43. The cloud's motion is analysed to be moving at about $2.6km\;s^{-1}$, and is calculated to transverse the Orion Nebula ~2 pc above from the nebula center, toward the direction of about $60^{\circ}$ to the line of sight. This cloud had undergone a tidal splitting about a million years ago and had formed a very thin and long cylindrical core well before being engaged in the collision. General implications of this phenomenon are discussed in relation to star formation mechanisms in the GMC.

  • PDF

Small-scale structures in the dust cloud associated with 17P/Holmes outburst

  • Ham, Ji-Beom;Ishiguro, Masateru;Kuroda, Daisuke;Fukushima, Hideo;Watanabe, Jun-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.92-92
    • /
    • 2010
  • A short-period comet, 17P/Holmes, is one of the most outstanding comets because of the outburs in 2007. It orbits the sun at the distance between 2.1AU and 5.2 AU with the orbital period of 6.9 year. On 2007 October 23, its brightness was suddenly increased by about a million times from 17 mag to 2.5 mag. We made observations of 17P/Holmes soon after the outburst on October 25, 27 and 28, using a 105cm telescope at the Ishigakijima Astronomical observatory, Japan. We took the images with V, R and I-band filters simultaneously. Total exposure times are 15 (October 25), 69 (October 27), and 37 (October 28) minute in each filter. The composite images provide good signal to noise ratio and help us to recognize faint structures embedded in the dust cloud. We examined a sequence of images using a digital filter that enhances the small-scale structures. As the result of the data analysis, we confirm (1) the radial expanded structure coming out from the nucleus of comet, and (2) dozens of blobs that moved radially away from the nucleus. In this presentation, we introduce the observations and the data reductions, and consider the origins of these fine structure.

  • PDF