Browse > Article
http://dx.doi.org/10.5303/JKAS.2020.53.3.77

CHEMICAL DIAGNOSTICS OF THE MASSIVE STAR CLUSTER-FORMING CLOUD G33.92+0.11. IV. HIERARCHICAL STRUCTURE  

Minh, Young Chol (Korea Astronomy and Space Science Institute)
Liu, Hauyu Baobab (Academia Sinica Institute of Astronomy and Astrophysics)
Chen, Huei-Ru Vivien (Institute of Astronomy and Department of Physics, National Tsing Hua University)
Publication Information
Journal of The Korean Astronomical Society / v.53, no.3, 2020 , pp. 77-85 More about this Journal
Abstract
In the molecular cloud G33.92+0.11A, massive stars are forming sequentially in dense cores, probably due to interaction with accreted gas. Cold dense gas, which is likely the pristine gas of the cloud, is traced by DCN line and dust continuum emission. Clear chemical differences were observed in different source locations and for different velocity components in the same line of sight. Several distinct gas components coexist in the cloud: the pristine cold gas, the accreted dense gas, and warm turbulent gas, in addition to the star-forming dense clumps. Filaments of accreted gas occur in the northern part of the A1 and A5 clumps, and the velocity gradient along these features suggests that the gas is falling toward the cloud and may have triggered the most recent star formation. The large concentration of turbulent gas in the A2 clump seems to have formed mainly through disturbances from the outside.
Keywords
ISM: molecules; radio lines: ISM; stars: formation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Asvany, O., Schlemmer, S., & Gerlich, D. 2004, Deuteration of $CH^+_n$ (n = 3 - 5) in Collisions with HD Measured in a Low-Temperature Ion Trap, ApJ, 617, 685   DOI
2 Charnley, S. B. 1997, Sulfuretted Molecules in Hot Cores, ApJ, 481, 396   DOI
3 Das, A., Sahu, D., Majumdar, L., & Chakrabarti, S. K. 2016, MNRAS, Deuterium Enrichment of the Interstellar Grain Mantle, 455, 540   DOI
4 Fish, V. L., Reid, M. J., Wilner, D. J., & Churchwell, E. 2003, Hi Absorption toward UC HII Regions: Distances and Galactic Structure, ApJ, 587, 701   DOI
5 Gerlich, D., Herbst, E., & Roueff, E. 2002, $H^+_3$+HD${\rightarrow}H_2D^{+}+H_2$: Low-temperature Laboratory Measurements and Interstellar Implications, Planet. Space Sci., 50, 1275   DOI
6 Hatchell, J., Thompson, M. A ., Millar, T. J., & Macdonald, G. H. 1998, Sulphur Chemistry and Evolution in Hot Cores, A&A, 338, 713
7 Leurini, S., Rolffs, R., Thorwirth, S., et al. 2006, APEX 1 mm Line Survey of the Orion Bar, A&A, 454, L47   DOI
8 Lis, D. C., Gerin, M., Phillips, T. G., & Motte, F. 2002, The Role of Outflows and C Shocks in the Strong Deuteration of L1689N, A&A, 569, 322
9 Liu, H. B., Jimenez-Serra, I., Ho, P. T. P., et al. 2012, Fragmentation and OB Star Formation in High-Mass Molecular Hub-Filament Systems, ApJ, 756, 10   DOI
10 Liu, H. B., Galvan-Madrid, R., Jimenez-Serra, I., et al. 2015, ALMA Resolves the Spiraling Accretion Flow in the Luminous OB Cluster-forming Region G33.92+0.11, ApJ, 804, 37   DOI
11 Liu, H. B., Chen, H. V., Roman-Zuniga, C. G., et al. 2019, Investigating Fragmentation of Gas Structures in OB Cluster-forming Molecular Clump G33.92+0.11 with 1000 au Resolution Observations of ALMA, ApJ, 871, 185   DOI
12 Minh, Y. C., Chen, H.-R., Su, Y.-N., & Liu, S.-Y. 2012, SMA Observations of the Hot Cores of DR21(OH), JKAS, 45, 157
13 Minh, Y. C. & Liu, H. B. 2019, Chemical Diagnostics of the Massive Star Cluster-Forming Cloud G33.92+0.11. III. $^{13}CN$ and DCN, JKAS, 52, 83
14 Minh, Y. C., Liu, H. B., & Galvan-Madrid, R. 2016, Chemical Diagnostics of the Massive Star Cluster-forming Cloud G33.92+0.11. I. $^{13}CS$, $CH_3OH$, $CH_3CN$, OCS, $H_2S$, $SO_2$, and SiO, ApJ, 824, 99   DOI
15 Minh, Y. C. 2016, Sulfur-bearing Molecules Observed in the Massive Star-forming Regions DR21(OH) and G33.92+0.11, J. Phys. Conf. Ser., 728, 052007   DOI
16 Minh, Y. C., Liu, H. B., Galvan-Madrid, R., et al. 2018, Chemical Diagnostics of the Massive Star Cluster-forming Cloud G33.92+0.11. II. HDCS and DCN, ApJ, 864, 102   DOI
17 Roberts, H. & Millar, T. J. 2000a, Modelling of Deuterium Chemistry and Its Application to Molecular Clouds, A&A, 361, 388
18 Rodgers, S. & Millar, T. 1996, The Chemistry of Deuterium in Hot Molecular Cores, MNRAS, 280, 1046   DOI
19 Rodgers, S. D. & Charnley, S. B. 2001, Chemical Differentiation in Regions of Massive Star Formation, ApJ, 546, 324   DOI
20 Schoier, F. L., van der Tak, F. F. S., van Dishoeck E. F., & Black, J. H. 2005, An Atomic and Molecular Database for Analysis of Submillimetre Line Observations, A&A, 432, 369   DOI
21 Tine, S., Roueff, E., Falgarone, E., et al. 2000, Deuterium Fractionation in Dense Ammonia Cores, A&A, 356, 1039
22 van Dishoeck, E. F., Blake, G. A., Jansen, D. J., & Groesbeck, T. D. 1995, Molecular Abundances and Low-Mass Star Formation. II. Organic and Deuterated Species toward IRAS 16293-2422, ApJ, 447, 760   DOI
23 Zinchenko, I., Liu, S.-Y., Su, Y.-N., et al. 2012, A Multi-wavelength High-resolution study of the S255 Star-forming Region: General Structure and Kinematics, ApJ, 755, 177   DOI
24 Watt, S. & Mundy, L. G. 1999, Molecular Environments of Young Massive Stars: G34.26+0.15, G11.94-0.62, G33.92+0.11, and IRAS 18511+0146, ApJS, 125, 143   DOI