• Title/Summary/Keyword: dust: extinction

Search Result 115, Processing Time 0.031 seconds

THE SCATTERING OF RADIATION IN PLANE-PARALLEL DUST LAYERS (평행평면의 성간먼지층에 의한 복사광의 산란)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.31-35
    • /
    • 2008
  • We present analytical approximations for calculating the scattering and escape of non-ionizing photons from a plane-parallel medium with uniformly illuminated by external sources. We compare the results with the case of a spherical dust cloud. It is found that more scattering and absorption occur in the plane-parallel geometry than in the spherical geometry when the optical depth perpendicular to the plane and the radial optical depth of the sphere are the same. The results can provide an approximate way to estimate radiative transfer in a variety interstellar conditions and can be applied to the dust-scattered diffuse Galactic light.

A NEW CATALOG OF SILICATE CARBON STARS

  • Kwon, Young-Joo;Suh, Kyung-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.4
    • /
    • pp.123-135
    • /
    • 2014
  • A silicate carbon star is a carbon star which shows circumstellar silicate dust features. We collect a sample of 44 silicate carbon stars from the literature and investigate the validity of the classification. For some objects, it is uncertain whether the central star is a carbon star. We confirm that 29 objects are verified silicate carbon stars. We classify the confirmed objects into three subclasses based on the evolution phase of the central star. To investigate the effect of the chemical transition phase from O to C, we use the radiative transfer models for the detached silicate dust shells. The spectral energy distributions and the infrared two-color diagrams of the silicate carbon stars are compared with the theoretical model results. For the chemical transition model without considering the effect of a disk, we find that the life time of the silicate feature is about 50 to 400 years depending on the initial dust optical depth.

POLARIZATION OF FIR EMISSION FROM T TAURI DISKS

  • Cho, Jung-Yeon;Lazarian, A.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.113-118
    • /
    • 2007
  • Recently far infra-red (FIR) polarization of the $850{\mu}m$ continuum emission from T Tauri disks has been detected. The observed degree of polarization is around 3 %. Since thermal emission from dust grains dominates the spectral energy distribution at the FIR regime, dust grains might be the cause of the polarization. We explore alignment of dust grains by radiative torque in T Tauri disks and provide predictions for polarized emission for disks viewed at different wavelengths and viewing angles. In the presence of magnetic field, these aligned grains produce polarized emission in infrared wavelengths. When we take a Mathis-Rumpl-Nordsieck-type distribution with maximum grain size of $500-1000{\mu}m$, the degree of polarization is around 2-3 % level at wavelengths larger than ${\sim}100{\mu}m$. Our study indicates that multifrequency infrared polarimetric studies of protostellar disks can provide good insights into the details of their magnetic structure.

A Far-UV Study in Taurus-Auriga-Perseus(TPA) Complex

  • Lim, Tae-Ho;Min, Kyung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.80.2-80.2
    • /
    • 2012
  • We firstly present the unified Far-UV continuum map of the Taurus-Auriga-Perseus (TPA) complex, one of the largest local associations of dark cloud located in (l, b)=([152,180], [-28, 0]), by merging both FIMS and GALEX. The FUV continuum map shows that dust extinction correlate well with the FUV around the complex. It says strong absorption in the dense Taurus cloud and Auriga cloud. Although the column density of Perseus and California cloud is similar to Taurus' and Auriga's, Perseus and California cloud do not show strong absorption in FUV because they are more distant than Taurus and Auriga cloud. We also present the dust scattering simulation based on Monte Carlo Radiative Transfer technique. Through the result of Monte-Carlo dust scattering simulation and comparing the result with FIMS-GALEX unified map we gain deeper understanding related to the spatial dust distribution of TPA region. As a preliminary result of the simulation we present the most probable front face, thickness, albedo, and asymmetry factor in this region, respectively. Through this work we can show a certain inclination of the spatial dust distribution. During this study we have developed the FUV dust scattering simulation code using Monte-Carlo method. We expect that it will be generally used to simulate dust scattering in the Galaxy.

  • PDF

MODEL DUST ENVELOPES AROUND SILICATE CARBON STARS (규산염탄소항성의 먼지층 모형)

  • Suh Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.1
    • /
    • pp.11-18
    • /
    • 2006
  • We have modeled dust envelopes around silicate carbon stars using optical properties for a mixture of amorphous carbon and silicate dust grains paying close attention to the infrared observations of the stars. The 4 stars show various properties in chemistry and location of the dust shell. We expect that the objects that fit a simple detached silicate dust shell model could be in the transition phase of the stellar chemistry. For binary system objects, we find that a mixed dust chemistry model would be necessary.

Aerosol Vertical Distribution Measured by LIDARs in Baengnyeongdo, Munsan, and Gunsan during 10~11 May 2010 (백령도, 문산, 군산의 라이다로 측정한 에어로졸 연직분포 -2010년 5월 10~11일 황사를 중심으로-)

  • Lee, Hae-Jung;Kim, Jeong Eun;Chun, Youngsin
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.519-526
    • /
    • 2013
  • This study aims to analyze the vertical distribution of Asian dust measured by LIDARs at three weather stations in Baengnyeongdo (BND), Munsan (MS), and Gunsan (GS) during 10~11 May 2010, and thereby investigate their effectiveness. Asian dust passed through from central to south-western part of Korea. Although dust particles were detected over the surface in MS and GS, LIDAR data showed that the Asian dust with non-spherical particles was observed in all of the three regions. It seems that the naked-eye observation could not detect dust over the surface of BND due to the temperature inversion below a height of 0.45 km. During the Asian dust events, the duration time of dust presented 9.5 hr (BND), 19.5 hr (MS), and 24.5 hr (GS), respectively with the longest time in GS, whereas dust altitudes ranged from 0.4 to 1.3 km (BND), 0.1 to 2.8 km and 4.1 to 4.2 km (MS), and 0.2 to 2.0 km (GS), respectively, while showing the highest altitude in MS. Aerosol optical thickness (AOT) retrieved by LIDAR and skyradiometer (SR), located close to the LIDAR sites, was compared. MS (LIDAR) and Seoul (SR) attained the AOT of 0.64 and 0.50, and GS (LIDAR) and Gongju (SR) attained the AOT of 0.38 and 0.54, respectively. As SR-derived angstrom exponents (AE) during the time period determined as Asian dust by LIDAR data were 0.17 in Seoul (near MS) and 0.30 in Gongju (near GS), it can be said that the characteristics of dust particles were appeared. During the study period, depolarization ratio could serve as a useful indicator to determine dust aerosol. But, it still seems essential to conduct further investigation with longer period of data to better describe the discrepancy of AOT between LIDARs and SR.

THE KOREAN 1592-1593 RECORD OF A GUEST STAR: AN 'IMPOSTOR' OF THE CASSIOPEIA A SUPERNOVA?

  • Park, Changbom;Yoon, Sung-Chul;Koo, Bon-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.233-238
    • /
    • 2016
  • The missing historical record of the Cassiopeia A (Cas A) supernova (SN) event implies a large extinction to the SN, possibly greater than the interstellar extinction to the current SN remnant. Here we investigate the possibility that the guest star that appeared near Cas A in 1592-1593 in Korean history books could have been an 'impostor' of the Cas A SN, i.e., a luminous transient that appeared to be a SN but did not destroy the progenitor star, with strong mass loss to have provided extra circumstellar extinction. We first review the Korean records and show that a spatial coincidence between the guest star and Cas A cannot be ruled out, as opposed to previous studies. Based on modern astrophysical findings on core-collapse SN, we argue that Cas A could have had an impostor and derive its anticipated properties. It turned out that the Cas A SN impostor must have been bright ($M_V=-14.7{\pm}2.2mag$) and an amount of dust with visual extinction of ${\geq}2.8{\pm}2.2mag$ should have formed in the ejected envelope and/or in a strong wind afterwards. The mass loss needs to have been spherically asymmetric in order to see the light echo from the SN event but not the one from the impostor event.

The Study on the Quantitative Dust Index Using Geostationary Satellite (정지기상위성 자료를 이용한 정량적 황사지수 개발 연구)

  • Kim, Mee-Ja;Kim, Yoonjae;Sohn, Eun-Ha;Kim, Kum-Lan;Ahn, Myung-Hwan
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • The occurrence and strength of the Asian Dust over the Korea Peninsular have been increased by the expansion of the desert area. For the continuous monitoring of the Asian Dust event, the geostationary satellites provide useful information by detecting the outbreak of the event as well as the long-range transportation of dust. The Infrared Optical Depth Index (IODI) derived from the MTSAT-1R data, indicating a quantitative index of the dust intensity, has been produced in real-time at Korea Meteorological Administration (KMA) since spring of 2007 for the forecast of Asian dust. The data processing algorithm for IODI consists of mainly two steps. The first step is to detect dust area by using brightness temperature difference between two thermal window channels which are influenced with different extinction coefficients by dust. Here we use dynamic threshold values based on the change of surface temperature. In the second step, the IODI is calculated using the ratio between current IR1 brightness temperature and the maximum brightness temperature of the last 10 days which we assume the clear sky. Validation with AOD retrieved from MODIS shows a good agreement over the ocean. Comparison of IODI with the ground based PM10 observation network in Korea shows distinct characteristics depending on the altitude of dust layer estimated from the Lidar data. In the case that the altitude of dust layer is relatively high, the intensity of IODI is larger than that of PM10. On the other hand, when the altitude of dust layer is lower, IODI seems to be relatively small comparing with PM10 measurement.

Unveiling Intrinsic Properties of Dusty Red AGNs

  • Kim, Dohyeong;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.37.3-37.3
    • /
    • 2018
  • Theoretical simulation studies suggest that dust-obscured AGNs appear for a certain period when merger-driven star-forming galaxies evolve to unobscured type 1 AGNs. The dust-obscured AGNs would have red colors due to the dust extinction in their host galaxies, and they are expected to have higher accretion rates than unobscured type 1 AGNs. Red AGNs are found by selecting type 1 AGNs with very red colors, and they have been suspected as the intermediate-stage, dusty AGNs. However, it is not yet clear if red AGNs really correspond to the dusty AGNs due to a lack of intrinsic properties of red AGNs. For unveiling intrinsic properties of red AGNs, we study the NIR and MIR spectra of unobscured type 1 AGNs and red AGNs. There are three main themes: (i) derivation of NIR and MIR BH mass estimators can be used for red AGN study; (ii) investigation of red AGN selection methods to test its usefulness to identify dusty red AGNs; and (iii) investigation of the accretion rates of red AGNs to see if they have the properties as predicted in the simulation studies.

  • PDF

SIMULATED IMPACTS TO NON-MAGNETIC CATACLYSMIC VARIABLE DISKS

  • MONTGOMERY, M.M.;HOWELL, N.;SCHWARZ, C.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.179-182
    • /
    • 2015
  • Dust has recently been found to be prevalent in compact binaries such as non-magnetic Cataclysmic Variable systems. As a possible source of this dust is from solid bodies, we explore impacts to non-magnetic Cataclysmic Variable disks. We use three-dimensional Smoothed Particle Hydrodynamic simulations to search for impact signatures. From injections of whole bodies to these disks, we find pulse shapes in simulated bolometric light curves that resemble impact flashes in the light curves of the Shoemaker-Levy 9 event. As a result, we tentatively identify these light curve shapes as signatures of impacts.