• Title/Summary/Keyword: durable-press finishing

Search Result 20, Processing Time 0.019 seconds

Study on the Evaluation of D.P. and Handle for Vapor Phase Finished Fabrics (V.P.가공 직물의 D.P.성과 Handle 평가에 관한 연구)

  • 최근영;백천의
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.5
    • /
    • pp.792-800
    • /
    • 1996
  • The shape retention finishing provides a fabric for easiness of no-ironing after laundering. In spite of the obvious importance of the new finishing treatment, few systematic studies have been performed on the handle of the fabrics finished by the durable press process. The purpose of this research is to investigate the relationships among the mechanical properties, durable press conditions, primary hand values and the total hand value of the fabrics finished by shape retention process. In this experiment, durable press grade of unfinished fabrics decreased below 2.5, but those of finished fabrics maintained above 4, but the mechanical properties of finished fabrics did not change significantly after laundering. In finished fabrics, D.P. value were correlated with mechanical properties, but had little effects with H.V. and T.H.V. Since the evaluation of the effect of durable press process was done with the naked eyes and standard sample, we could not know exactly change o( mechanical properties, but trace the change of mechanical properties which gave influences on the durable press effects by using KES-FB System.

  • PDF

Durable Press Finishing of Silk/Cotton Fabrics with BTCA (3) - The Study of Ester Crosslinkages of Silk/Cotton Fabrics Treated with BTCA by FT-IR Spectroscopy - (BTCA에 의한 실크/면 교직물의 DP 가공 (3) - FT-IR 분광법에 의한 BTCA 처리 실크/면 교직물의 에스테르 가교 평가 -)

  • Cho, Seok-Hyun;Kim, Yong;Park, Jong-Jun;Lee, Moon-Chul
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.17-23
    • /
    • 2003
  • Fourier transform infrared spectroscopy(FT-IR) was used to characterize the intermolecular ester crosslinkages in cotton cellulose. The FT-IR data show that the band of the ester carbonyl group can be separated from overlapping carboxyl/carbonyl band by converting carboxyl group to carboxylate. When esterification occurs between a polycarboxylic acid and cotton cellulose, the carbonyl groups retained in the cotton exist in three forms; ester, carboxyl, and carboxylate anion. The FT-IR data were also correlated to the durable press rating result obtained. The appearance of BTCA-finished durable press silk/cotton fabrics were improved.

Durable Press Performance and Water Repellency of Cotton/Polyester Fabrics Finished by BMDHEU/Fluorochemicals (DMDHEU/FC 일욕가공된 면/폴리에스테르 혼방직물의 DP성 및 발수성)

  • 권영아
    • Textile Coloration and Finishing
    • /
    • v.10 no.5
    • /
    • pp.24-31
    • /
    • 1998
  • The effects of DMDHEU alone and DMDHEU/Fluorochemical(FC) combined treatment on the physical properties of 75%/25% cotton/polyester(CP) blended fabrics were investigated. FC water repellent and DMDHEU durable press finishes were applied in combination to CP fabrics to provide good water repellency as well as great durable press(DP) performance. The physical properties of the fabrics were evaluated by wrinkle recovery angle(WRA), DP performance, contact angle, demand wettability, and water repellency. The durable press/water repellent finished(DP/WR) CP fabrics show considerably improved WRA and DP performance. The DP/WR finishes do not change the water contact angie of polyester fibers significantly, while the DP finishes increase it. Both DP and DP/WR finishes increase the contact angle of cotton fibers. The water uptake amount increases in the following order : DP/WR cotton, DP/WR CP<DP cotton, DP CP < Control CP, Control cotton. The water uptake amount increases in the following order DP/WR CP, DP/WR cotton <DP cotton <DP CP<Control CP, Control cotton. Considerable improvements for water repellency are imparted to the CP fabrics treated with DP/WR, and the level of improvement is not significantly different from that of the DP/WR cotton fabrics. These results lead to the conclusion that DP/YVR treatments a single pad bath on CP are effective finishes for improving both DP performance and water repellency.

  • PDF

Study on the Whiteness Improvement of Glyoxal Treated Cotton Fabric - Effects of Additives - (글리옥살 처리 면직물의 백도 개선에 대한 연구 - 첨가제의 영향 -)

  • Cho, Hang Sung;Lee, Bum Hoon
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.284-290
    • /
    • 2017
  • The glyoxal has been used as formaldehyde free DP(durable press) agents in wrinkle free treatment for cotton fabrics. However, the yellowing problem is a disadvantage of DP finishing process for cotton fabrics with glyoxal. In order to improve the whiteness, it was investigated that the effect of coreactant and treatment method with various whitening additives such as STB(sodium tetraborate, $Na_2B_4O_7$), SPB(sodium perborate, $NaBO_3$), SC(sodium chlorite, $NaClO_2$) and SPC(sodium percarbonate, $Na_2CO_3{\cdot}1.5$ $H_2O_2$). The increasing the concentration of whitening additives(STB, SPB, SC and SPC), the whiteness and the strength retention ratio of cotton fabrics were increased but the wrinkle recovery angles were decreased in one bath method. It was not suitable to improve whiteness because the whiteness value is about 60. In the case of SC used two bath method, the whiteness is near 70, which is similar to untreated fabrics, without decreasing of WRA and strength.

Study of Crease Resistant Finish on Hemp Fabrics(Andongpo) (대마직물(안동포)의 방추가공에 관한 연구)

  • Choi, Hee;Kim, Ryong;Hong, Sung-Hak
    • Fashion & Textile Research Journal
    • /
    • v.6 no.2
    • /
    • pp.229-233
    • /
    • 2004
  • Andongpo, 100% Korean hemp fabric was treated with the glyoxale resin type finishing agent and/or the soluble urethane type finishing agent to determine the optimum process condition of the crease resistant finish and the crease recovery of treated sample fabrics was evaluated for the study. The treatment conditions for the study were 6 conditions, such as, A-1~A-6, in which A-1 was the condition of treatment glyoxale resin type finishing agent only and A-2~A-6 were the condition of treatment both glyoxale resin type finishing agent and soluble urethane type finishing agent. Among the 6 conditions, the crease recovery of the sample treated with A-4 condition was $148^{\circ}$(angle of recovery method) and grade 3.2(appearance method) and so, these samples showed the excellent crease recovery. From the result, 15g/l of the catalyst conc., 50g/l of the glyoxale resin type finishing agent cone., and 40g/l of the softner were the optimum treatment condition for the crease resistant finish of the andongpo.

Durable Press Finishing of Silk/Cotton Fabrics with BTCA ( I ) - Effect of Treating Conditions on Physical Properties - (BTCA에 의한 실크/면 교직물의 DP 가공 (I) - 물리적 특성에 미치는 처리 조건의 영향 -)

  • 이문철;조석현
    • Textile Coloration and Finishing
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2002
  • Silk/Cotton fabrics were treated with butanetetracarboxylic acid(BTCA) to improve crease recovery and anti-shrinking properties at various curing temperatures and pH values. We investigated the effects of finishing conditions on add-on of BTCA, bending property(E, 2HB), wrinkle recovery angle, shrinkage, and dyeing properties. The Add-on of BTCA increased with increasing curing temperature and concentration. Crease recovery was improved with decreasing shrinkage. Maximum add-on of BTCA was showed at pH 2.5. In case of dyeing and mercerization, silk side treated with BTCA was more flexible than untreated, whereas cotton side was more stiff. In dyeing after mercerization, B and 2HB values were higher and K/S values were doubled nearly. The hand of fabric improved with decreasing B and 2HB by the BTCA treatment. BTCA treatment after reactive dyeing improved crease recovery, and caused no change of color difference. However, BTCA treatment after reactive dyeing didn't improve crease recovery, whereas B and 2HB were decreased considerably by the treatment.

A Study on the Durable Press Finishing of Cotton Fiber Treated with Polycarboxylic Acid (폴리카르복시 산 처리 면섬유의 DP가공에 관한 연구)

  • 이찬민;최철민
    • Textile Coloration and Finishing
    • /
    • v.9 no.6
    • /
    • pp.58-67
    • /
    • 1997
  • PTCA(1,2,3-propanetricarboxylic acid) and BTCA(1,2,3-butanetetracarboxylic acid) are selected as new nonformaldehyde agents for ester crosslinking of cotton cellulose to replace the traditional DMDHEU reagent. A goal of this research is to propose unknown ester mechanism of cotton cellulose by PTCA or BTCA using crystal structure model suggested by Meyer and Takahashi. In pursuit of these goals, we have treated 100% cotton broad cloth with PTCA or BTCA and different catalysts. They were used with $NaH_2PO_2,\;NaH_2PO_4,\;Na_2HPO_4,\;NaH_2PO_2,\;Na_3PO_4,$ catalysts to produce nonformaldehyde fabric finishes. Treatments were applied to all cotton fabrics using a pad-dry -cure process. The esterfication of cotton treated with BTCA or PTCA was investigated using Fourier transform infrared(FT-IR) spectra and the breaking strength, abrasion retention and discoloration properties were determined to prove the durable finished fabrics. Patterns with respect to abrasion resistance were more complex. Because PTCA and BTCA add-ons were comparable, the data suggest that the more effective catalysts, $NaH_2PO_2$ and mixed phosphate $NaH_2PO_2/NaH_2PO_4$) are effecting either a great number of crosslinks in the cotton or producing crosslinks that differ in actual structure.

  • PDF

Formaldehyde Free Cross-linking Agents Based on Maleic Anhydride Copolymers

  • Yoon, Kee-Jong;Woo, Jong-Hyung;Seo, Young-Sam
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.182-187
    • /
    • 2003
  • Low molecular weight copolymers of maleic anhydride and vinyl acetate were prepared to develop formaldehyde free cross-linking agents. Since lower molecular weight is favorable for efficient penetration of the finishing agent into the cotton fibers in the padding process, the concentration of the initiator, chain transfer agent and the monomer ratios were varied to obtain copolymers of low molecular weights. The prepared polymers were characterized by GPC, $^1{H-NMR}$, FTIR, DSC and TGA. Copolymers of molecular weights of 2 000 to 10 000 were obtained and it was found that the most efficient method of controlling the molecular weight was by varying the monomer ratios. Poly(maleic anhydride-co-vinyl acetate) did not dissolve in water, but the maleic anhydride residue hydrolyzed within a few minutes to form poly(maleic acid-co-vinyl acetate) and dissolved in water. However, the maleic acid units undergo dehydration to form anhydride groups on heating above ${160}^{\circ}C$ to some extent even in the absence of catalysts. The possibility of using the copolymers as durable press finishing agent for cotton fabric was investigated. Lower molecular weight poly(maleic anhydride-co-vinyl acetate) copolymers were more efficient in introducing crease resistance, which appears to be due to the more efficient penetration of the cross-linking agent into cotton fabrics. The wrinkle recovery angles of cotton fabrics treated with poly(maleic anhydride-co-vinyl acetate) copolymers were slightly lower than those treated with DMDHEU and were higher when higher curing temperatures or higher concentrations of copolymer were used, and when catalyst, $NaH_2$$PO_2$, was added. The strength retention of the poly(maleic anhydride-co-vinyl acetate) treated cotton fabrics was excellent.

Durable Press Finishing of Silk/Cotton Fabrics with BTCA(2) - The Evaluation of Physical Properties of Silk/Cotton Fabrics Treated with BTCA by HPLC Analysis - (BTCA에 의한 실크/면 교직물의 DP 가공(2) - HPLC에 의한 BTCA 처리 실크/면 교직물의 물리적 특성 평가 -)

  • 조석현;이문철
    • Textile Coloration and Finishing
    • /
    • v.14 no.3
    • /
    • pp.19-25
    • /
    • 2002
  • Silk/cotton fabrics were treated with butanetetracarboxylic acid(BTCA) under various treating conditions such as concentration, treated time and curing temperatures. Bending property, tensile strength, wrinkle recovery angle, and shrinkage were measured. The BTCA concentration in the saponfication mixture was measured by an isocratic HPLC equipped with the strong cationic exchange column Aminex HPX-87-H and a UV detector. The detected concentration of BTCA was shown in silk side much more than that of cotton side. The bending and shrinkage properties were improved at minimum curing condition and the lower concentration of BTCA. Tensile strength decreased with increasing concentration of BTCA, curing temperature and treated time, while wrinkle recovery angle increased.

Nonformaldehyde-Nonphosphorus Durable Press Finishing of Cotton with Carbodiimide and Eutanetetracarboxylic Acid (카보다이이마이드와 부탄테트라카르복실산을 이용한 면의 무포름알데히드-무인 방추 가공)

  • 신인수;홍경옥;김혜경;최형민
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.7
    • /
    • pp.911-919
    • /
    • 1998
  • 부탄테트라카르복실 산을 이용한 면직물의 DP 가공에서 가장 효과적인 촉매로 알려진 sodium hypophosphite(SHP)를 대체하기 위하여 carbodiimide 촉매의 효과를 알아보았다. Carbo야-imide 촉매로는 cyanamide(CY), dicyandiamide(DCY)와 disodium cyanamide(DSC)를 사용하였다. DCY와 DSC가 일반적으로 CY보다 좋은 방추도와 방축도 등을 보였고 또한 독성이 낮고 저장시 안정도 등이 우수하므로 산업적인 응용이 가능하다. 필요한 방추도와 물리적성질의 균형을 위해서 가공욕의 pH 조절이 가장 중요한 인자로 나타났다. 촉매존재시에 면과 부탄테트라카르복실산의 에스터화 가교 반응 메커니즘을 제아하였다. 또한 황화 염료로 염색된 염색포에 대한 가공 효과 분석시 carbodiimide 촉매가 SHP 보다 대체로 작은 색상 변화를 유발시켰다. 이러한 연구 결과는 부양화와 여러 염료의 색상 변화를 유발시키는 SHP를 사용하지 않고 부탄테트라카르복실 산과 carbodiimide 촉매를 이용한 무포름알데히드, 무인 가공제의 면직물 DP 가공의 가능성을 보여 주고 있다.

  • PDF