• Title/Summary/Keyword: durability safety

Search Result 670, Processing Time 0.028 seconds

Study on Convergence Technique through Structural Analysis on the Axle of Railway Vehicle (철도 차량의 축에 대한 구조 해석을 통한 융합 기술연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.93-101
    • /
    • 2015
  • As the axle at the vehicle of railway has the important role for safe running, the strength, and impact-proof, safety factor, stress and deformation must be considered. There are the simulation models of 1 and 2 in this study. These models are investigated by performing the convergence technique through the design, the structural and fatigue analyses with CATIA and ANSYS. As the maximum deformation and equivalent stress of model A are lower than those of model B, model A has more durability than model B. The durability to prevent the damage can be investigated by applying the result of this study into the part design of the vehicle of rail road. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Structural Durability Analysis Related to Shape and Direction of Bicycle Frames (자전거 프레임의 형상과 방향에 따른 구조적 내구성 해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.969-975
    • /
    • 2013
  • While accelerating, bicycle frames are subject to torsion forces and deformation. In this study, bicycle frame durability was evaluated by using structural, fatigue, and vibration experiments. Three types of models were designed by changing the frame configurations according to the shape and direction of a bicycle frame design. Because maximum equivalent stress was greatest at the saddle and at connected parts in Models 1, 2, and 3, these frame sections were most vulnerable to failure. Model 2 was the least safe, due to the increased total deformation and equivalent stresses in the top tube horizontal to the ground. Based on vibration and fatigue analysis results, Model 2 was also determined to be the least safe frame, because the head tube was placed slightly higher above the seat tube and inclined to $10^{\circ}$. These study results can be utilized in the design of bicycle frames by investigating prevention and durability against damage.

Study on Structural Safety Analysis of EGR Valve (EGR Valve의 구조 안전성 해석에 관한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.528-534
    • /
    • 2011
  • This study analyzes thermal stress and durability fatigue on the modelling of EGR valve. In case of 10% opening at its inlet, the minimum temperature gets cool as 3 times as inlet temperature. The maximum equivalent stress becomes lowest as the value of $2.6274{\times}109$ Pa and fatigue life becomes highest as 23.657 Cycle. But the minimum temperature gets cool as 2.2 times as inlet temperature in case of 50% opening at its inlet. The equivalent stress becomes higher and fatigue life becomes lower than in case of 10% opening. In case of 100% opening at its inlet, the minimum temperature gets cool as 0.2 times as inlet temperature. The equivalent stress becomes lower and fatigue life becomes higher than in case of 50% opening. Maximum equivalent stress and total deformation are shown at the closing of EGR valve by the pressure of inflow gas. The structural analysis result of this study can be effectively utilized with the design of EGR valve by investigating prevention and durability against its damage.

Concrete structures under combined mechanical and environmental actions: Modelling of durability and reliability

  • Vorechovska, Dita;Somodikova, Martina;Podrouzek, Jan;Lehky, David;Teply, Bretislav
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2017
  • Service life assessments which do not include the synergy between mechanical and environmental loading are neglecting a factor that can have a significant impact on structural safety and durability assessment. The degradation of concrete structure is a result of the combined effect of environmental and mechanical factors. In order to make service life design realistic it is necessary to consider both of these factors acting simultaneously. This paper deals with the advanced modelling of concrete carbonation and chloride ingress into concrete using stochastic 1D and 2D models. Widely accepted models incorporated into the new fib Model Code 2010 are extended to include factors that reflect the coupled effects of mechanical and environmental loads on the durability and reliability of reinforced concrete structures. An example of cooling tower degradation by carbonation and an example of a bended reinforced concrete beam kept for several years in salt fog are numerically studied to show the capability of the stochastic approach. The modelled degradation measures are compared with experimental results, leading to good agreement.

Convergence Technique Study through CAE due to the Shape of Lift for Car (차량용 리프트의 형상에 따른 CAE를 통한 융합 기술 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.49-54
    • /
    • 2015
  • Nowadays, one lift among the fundamental equipments at auto-repair must withstand the heavy weight of car. Therefore, the strong lift which is easy to make repairs on cars is the indispensible equipment. In this study, three kinds of lifts are modelled and the simulation analysis is carried out with the finite element analysis program of ANSYS. The durability of lifts due to each configuration can be estimated on the background of this study result and the data to be contributed to the development of new lift for car with safety and durability can be accumulated ultimately. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

A Study of Fuel Pump Durability on the Bio-ethanol for FFV(Flexible Fuel Vehicle) System (바이오에탄올 연료에 대한 FFV(Flexible Fuel Vehicle)용 연료펌프모터의 내구성에 관한 연구)

  • Kim, Chang-Soo;Kwak, Dong-Ho;Jung, Byung-Jun;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.107-112
    • /
    • 2011
  • FFV(Flexible Fuel Vehicle) is the vehicle that can be used liberally from gasoline to E100(Ethanol 100%) for fuel. Recently, interest in the bio-fuel is increased by the environmental factors like exhaustion of the fossil fuel and ruduction of greenhouse gases. For the reason, adopting of FFV is activated in the world including North and South America. In general, bio-ethanol has highly corrosive substance in compare with gasoline. In the part of fuel system, corrosion can make a safety problem in case of fuel leakage and engine starting problem. So the fuel system of FFV have to be made of high corrosion-resistant materials. This study examined the effect of bio-ethanol on the durability properties according to component materials in FFV fuel pump motor and regulator using the High Temperature Fuel Circulation Test.

A Respiratory Toxicity Study of Sepiolite in Sprague-Dawley Rats (랫드에 주입된 세피오라이트에 의한 호흡기독성 연구)

  • Chung, Yong-Hyun;Han, Jeong-Hee;Sung, Jae-Hyuck;Yu, Il-Je
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.237-244
    • /
    • 2006
  • Two kinds of sepiolite, a $500^{\circ}C$ heat-treated sepiolite, and a $700^{\circ}C$ heat-treated sepiolite were analyzed for their physicochemical properties. After these sepiolites were instilled into rat lungs, the effects of the substances on lung pathological changes were evaluated. The lungs instilled with sepiolite increased their weight compared with the unexposed control. The pathological examination further showed increased legions of granuloma with early fibrosis. The heat treated sepiolites, however, did not show any toxicological differences from the untreated sepiolites. Thus chronic experiments are needed to evaluate the durability of mineral fibers, which is an essential experiment for evaluating biopersistence of fibers in lungs.

The Development of Aluminum Pipe Support for Apartment Slabs(I) (공동주택 슬래브의 알루미늄 파이프서포트 개발에 관한 연구(I))

  • Cha, Jung-Koo;Yi, Young-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.105-110
    • /
    • 2012
  • Steel elements are widely used for temporary structures on every construction site. but despite its strong resistences against heavy concrete volumes, they are easily eroded by oxygens in the space as times have been gone. If they are used several times in the construction fields, their elements are rusted and deformed and the strength is gradually reduced through the weak part. From this point of view, aluminum pipe support has been developed in stead of steel pipe sopport with enhancing durability against oxygens all the more. The developed aluminium pipe support has been lighter than steel unit, so workability has been improved. In another advantage of aluminium pipe support, different level control is possible with being equipped with the level control nut which enables the length adjustment of aluminium pipe support and the collapse of aluminum pipe support could be also prevented from the structures in the long term.

Premature Failure Prevention design of Three-way Catalyst Substrate using DOE (실험계획법을 이용한 삼원촉매담체의 조기 파손 예방 설계)

  • Lee, Dong-Woo;Cho, Seok-Swoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.101-108
    • /
    • 2010
  • Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but doesn't satisfy thermal durability. Thermal stress analysis for three-way catalyst was performed based on experimental temperature distribution. Thermal safety of three-way catalyst was estimated by safety factor. Aspect ratio variable had the most significant effect on thermal stress. Thickness variable had the least significant effect on thermal stress. Optimal conditions for premature failure prevention of three-way catalyst were as follows : (1) aspect ratio of three-way catalyst : 0.6:1 (2) 2.84mm thick (3) silicon nitride. The safety of Taguchi-optimized three-way catalyst were 4.7 times higher than that of existent three-way catalyst.

Development of State Assessment System of Low-Rise Reinforced Concrete Buildings to Remodeling (리모델링을 위한 기존 저층형 콘크리트 구조물의 상태평가시스템 개발)

  • Kim, Jin-Soo;Kim, Chang-Eun
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.115-123
    • /
    • 2003
  • Remodeling is not subject to strict laws or regulations for permission procedure and structure safety inspection compared with new construction. Most of building owners do not recognize the importance of structural safety enough and place an order to small unlicensed construction company. As a result, important structural materials are damaged without enough investigation into permitted durability and fixed weight and load weight increase. This study suggests a system that can evaluate the state of the building and enables fast judgment on needs of repairing or strengthening as well as needs structural examination.