• Title/Summary/Keyword: durability properties

Search Result 1,602, Processing Time 0.031 seconds

Studies on the Durability of Mortars (모르타르의 내구성에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1604-1615
    • /
    • 1969
  • This experiment was carried out as one of the basic studies to improve the acid resistance of concrete and it was conducted to investigate some relations among physical properties such as basorption, ratio of water to cement, compressive strength, density and ratio of mix to weight losses of mortar when exposed to 0.1 N solution of hydrochrolic acid. The results obtained from the limited data secured so far in this experiment are summarized as follows: 1. The specimens used in the experiment were made of 5 cubic centimeters of mortar having such various ratios of mix by weight as 1 : 1, 1 : 3, 1 : 5, 1 : 7, 1 : 10. 2. Physical tests included compressive strengths at 7 days, 28 days, 3 months, and 6 month, and 5 hour boiling absorption test. 3. In acid test, every specimen was immersed into 0.1 N solution of hydrochrolic acid. The specimens exposed to the acid solution were weighed to determine the weight losses of the acid-corroded at one week interval for 7 weeks exposure, and the old acid solutions were also changed to fresh one when weighed the weight losses by acid attack at one week interval. 4. The correlative relations were found among physical properties and they are expressed by certain formulas as follows; i) Relation between ratio of mix and absorption Y = 1.036x + 13.53 where Y: absorption(%) X: ratio of mix ii) Relation between ratio of mix and ratio of water-cement Y = 0.204x + 0.214 where Y: ratio of water-cement. X: ratio of mix iii) Relation between ratio of water-cement and absorption Y = 5.01x + 12.53 where Y: absorption(%). X: ratio of water-cement iv) Relation between density and absorption Y = 50.6 - 0.0176X where Y: absorption(%). X: density($kg/m^3$) v) Relation between density and ratio of water cement Y = 7.2183 - 0.0033X where Y: ratio of water-cement . X: density($kg/m^3$) 5. After completing the acid exposure test the specimens were corroded and , the per cent ranges of weight losses varies from a minimum of 20.4 per cent at a 1 : 1 mix to a maximum of 92.0 per cent at a 1:10 mix 6. The correlative relations of physical properties of mortar to weight losses by acid attak were found and they are also expressed by certain formulas as follows: i) Relation between weight losses and ratio of mix Y = 8.59X + 8.63 where Y: weight losses(%), X: ratio of mix ii) Relation between wieght losses and absorption Y = 0.121x + 12.43 where Y: absorption(%). X: weight losses(%) iii) Relation between weight losses and ratio of w/c Y = 0.0226X + 0.07 where Y: ratio of w/c X: weight losses(%) iv) Relation between weight losses and compressive strength LogY = 3.6097 - 0.05058X + 0.00022$X^2$ where Y: compressive strength ($kg/cm^3$) X: weight losses(%) v) Relation between weight losses and density Y = 2153.1 - 6.62X where Y: density($kg/m^3$) X: weigh losses(%) 7. In order to make better acid resistant mortar, it could be concluded that a 1 : 3 mix or richer mixes, adequate mixing water to minnimize the ratio of water-cement considering the workability, 16 per cent or less absorption by 5 hour boiling water, 1,800 kilogram per cubic meter or denser density by absolute weight base and 200 kilogram per square meter or compressive strength at 20 day, etc are required so as to obtain acid-resistant mortar. In addition to the above, it might be recommonded to select the fine aggregate and to use better equipments such as a mechanical vibrator, a mechanical mixer etc. in concrete manufacturing works.

  • PDF

Studies on the Durability of Mortars (모르타르의 내구성에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1798-1802
    • /
    • 1969
  • The experiment was carried out as one of the basic studies to improve the alkali-resistance of cement mortars and it was conducted to investigate some propetties of mortars relating to weight losses when exposed to 0.1 N salution of sodium hydroxide. The experiment and the results obtained are summarized as follow; 1. The specimens used in this experiment were made of 5 centi-meter cubes of mortar having such various ratios of mix by weight as 1 : 1, 1 : 3, 1 : 5, 1 : 7 and 1 : 10. 2. Physical tests included compressive strengths at 7 days, 28 days, 3 months, and 6 month, and 5 hour boiling absorption test. 3. In alkali test, every specimen was immersed into 0.1 N solutions of sodium hydroxide. The specimens exposed to the alkali solution were weighed to determine the weight losses of the alkail-corroded at one week interval for 7 week's exposure and the old alkali solutions were also changed to fresh solutions when weighed the weight losses by alkali attack at one week interval. 4. According to the alkail test after 7 week's exposure, no weight losses were observed on ratios of mix 1:1 and 1:3 and slight weight losses occurred on ratios of mix 1:5 and 1:7, but relatively large amount of weight losses were showed by 36.6 per-cent on ratios of mix 1:10. It was also found that the weight losses of the alkali-corroded were extremely lower than those of the acid-corroded at the some concentrations as 0.1 N of solutions. 5. In order to make better quality of alkali-resistant mortar it might recomend that a 1:7 mix or richemixes, use of small amount of mixing water for watertight, 20 per cent or less absorption by 5 hour boiling 1,600 kirogram per cubic meters or denser densities by absolute dry base are available for physical properties of mortar. It could conclude acid-resistant mortars were so high alkali-resistant, that it is expected to make and improve the acid-resistant mortars for getting rid of damages by alkali attack.

  • PDF

Freeze-thaw Resistance Estimation of Concrete using Surface Roughness and Image Analysis (콘크리트의 동결융해 저항성 추정을 위한 표면 거칠기 및 이미지 분석의 적용성)

  • Lee, Binna;Lee, Jong Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • As part of a research dedicated to the field evaluation of the durability of concrete subjected to freezing-thawing, this study analyzes the relationship between the surface roughness and the relative dynamic elastic modulus through image analysis. Four mix compositions with water-to-binder ratios (W/B) of 40%, 50%, 60% and 70% and without AE agent were considered to provoke early freezing. The basic physical properties of the mixes including the relative dynamic elastic modulus and the compressive strength were first evaluated experimentally according to W/B. Then, tests were performed to measure the surface roughness followed by photographs and SEM image analysis. The measured surface roughness tended to increase with larger number of freezing-thawing cycles regardless of W/B. The relative dynamic elastic modulus appeared to increase gradually with the number of cycles for the relatively denser mixes with W/B of 40% and 50%. Besides, the surface roughness increased only at rupture for the mixes with W/B of 60% and 70%. Moreover, the analysis of the photographs of the surface of the mixes with W/B of 40% and 50% revealed that the degradation progressed gradually from the surface with the freezing-thawing cycles. However, for the mixes with W/B of 60% and 70%, apparent change of the surface remained very insignificant until rupture at which damage like cracking could be observed. Consequently, the analysis of surface photograph or the measurement of the surface roughness presented some limitation in assessing the degree of freezing-thawing-induced degradation in case of relatively porous specimens. On the other hand, the photograph and surface roughness appeared to be sufficient for assessing such degradation for the mixes with W/B of 40% and 50%. Accordingly, the image of the surface and the surface roughness are potentially applicable on site for the assessment of freezing-thawing damages in relatively dense mixes.

Fatigue fracture of different dental implant system under cyclic loading (반복하중에 따른 수종 임플란트의 피로파절에 관한 연구)

  • Park, Won-Ju;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Statement of problem: Problems such as loosening and fractures of retained screws and fracture of implant fixture have been frequently reported in implant prosthesis. Purpose: Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed. Material and methods: Total 28 of external hexed implants were divided into 7 of 4 groups; Group A (3i, FULL $OSSEOTITE^{(R)}$Implant), Group B (Nobelbiocare, $Br{\aa}nemark$ $System^{(R)}$Mk III Groovy RP), Group C (Neobiotec, $SinusQuick^{TM}$ EB), Group D (Osstem, US-II). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fixture, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT-$\alpha$. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60-600 N until fracture occurred. The fracture pattern of abutment screw and fixture was observed under scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis Results: 1. In Vicker's hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D. 2. In all implant groups, implant fixture fractures occurred mainly at the 3-4th fixture thread valley where tensile stress was concentrated. When the fatigue life was compared, significant difference was found between the group A, B, C and D (P<.05). 3. The fracture patterns of group B and group D showed complex failure type, a fracture behavior including transverse and longitudinal failure patterns in both fixture and abutment screw. In Group A and C, however, the transverse failure of fixture was only observed. 4. The finite element analysis infers that a fatigue crack started at the fixture surface. Conclusion: The maximum tensile stress was found in the implant fixture at the level of cortical bone. The fatigue fracture occurred when the dead space of implant fixture coincides with jig surface where the maximum tensile stress was generated. To increase implant durability, prevention of surrounding bone resorption is important. However, if the bone resorption progresses to the level of dead space, the frequency of implant fracture would increase. Thus, proper management is needed.

MICROLEAKAGE AND WATER STABILITY OF RESIN CEMENTS

  • Choi Sun-Young;Lee Sun-Hyung;Yang Jae-Ho;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.369-378
    • /
    • 2003
  • Statement of Problem: Recently, resin cements have become more widely used and have been accepted as prominent luting cements. Current resin cements exhibit less microleakage than conventional luting cements. However, the constant contact with water and exposure to occlusal forces increase microleakage even in resin cements inevitably. Most bonding resins have been modified to contain a hydrophilic resin such as 2-hydroxyethylmethacrylate (HEMA) to overcome some of the problems associated with the hydrophobic nature of bonding resins. By virtue of these modifications, bonding resins absorb a significant amount of water, and there may also be significant stresses at bonding interfaces, which may adversely affect the longevity of restorations. Therefore the reinforcement of water stability of resin cement is indispensable in future study. Purpose: This study was conducted to examine the influence of water retention on microleakage of two resin cements over the period of 6 months. Materials and Methods: 32 extracted human teeth were used to test the microleakage of a single full veneer crown. Two resin cements with different components and adhesive properties - Panavia F (Kuraray Co., Osaka, Japan) and Super-Bond C&B (Sun Medical Co., Kyoto, Japan)- were investigated. The storage medium was the physiological saline solution changed every week for 1 month, 3 months, and 6 months. One group was tested after storage for 1 day. At the end of the each storage period, all specimens were exposed to thermocycling from $5^{\circ}C$ to $55^{\circ}C$ of 500 cycles and chewing simulation of 50,000 cycles, and then stained with 50% silver nitrate solution. The linear penetration of microleakage was measured using a stereoscopic microscope at ${\times}40$ magnification and a digital traveling micrometer with an accuracy of ${\pm}3{\mu}m$. Values were analyzed using two-way ANOVA test, Duncan's multiple range tests (DMRT). Results : Statistically significant difference of microleakage was shown in the 3-month group compared with the1-day or 1-month group in both systems (p<0.05) and there were statistically significant differences in microleakage between the 3-month group and the 6-month group in both systems (p<0.05). The two systems showed different tendency in the course of increased microleakage during 3 months. In Panavia F, microleakage increased slowly throughout the periods. In Super-Bond C&B, there was no significant increase of microleakage for 1 month, but there was statistically significant increase of microleakage for the next 2 months. For the mean microleakage for each period, in the 3-month group, microleakage of Super-Bond C&B was significantly greater than that of Panavia F. On the other hand, in the 6-month group, microleakage of Panavia F was significantly greater than that of Super-Bond C&B (p<0.05). Conclusion: Within the limitation of this study, water retention of two different bonding systems influence microleakage of resin cements. Further studies with the longer observation periods in viro are required in order to investigate water stability and the bonding durability of the resin cement. CLINICAL IMPLICATIONS Microleakage at the Cement-tooth interfaces did not necessarily result in the failure of the crowns. But it is considered to be a major factor influening the longerity of restorations. Further clinical approaches for decreasing the amount of microleakage are required.

Characteristics of Flexible Transparent Capacitive Pressure Sensor Using Silver Nanowire/PEDOT:PSS Hybrid Film (은나노와이어·전도성고분자 하이브리드 필름을 이용한 유연 투명 정전용량형 압력 센서의 특성)

  • Ahn, Young Seok;Kim, Wonhyo;Oh, Haekwan;Park, Kwangbum;Kim, Kunnyun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • In this paper, we developed a flexible transparent capacitive pressure sensor which can recognize X and Y coordinates and the size of force simultaneously by sensing a change in electrical capacitance. The flexible transparent capacitive pressure sensor was composed of 3 layers which were top electrode, pressure sensing layer, and bottom electrode. Silver nanowire(Ag NW)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid film was used for top and bottom flexible transparent electrode. The fabricated capacitive pressure sensor had a total size of 5 inch, and was composed of 11 driving line and 19 sensing line channels. The electrical, optical properties of the Ag NW/PEDOT:PSS and capacitive pressure sensor were investigated respectively. The mechanical flexibility was also investigated by bending tests. Ag NW/PEDOT:PSS exhibited the sheet resistance of $44.1{\Omega}/square$, transmittance of 91.1%, and haze of 1.35%. Notably, the Ag NW/PEDOT:PSS hybrid electrode had a constant resistance change within a bending radius of 3 mm. The bending fatigue tests showed that the Ag NW/PEDOT:PSS could withstand 200,000 bending cycles which indicated the superior flexibility and durability of the hybrid electrode. The flexible transparent capacitive pressure sensor showed the transmittance of 84.1%, and haze of 3.56%. When the capacitive pressure sensor was pressed with the multiple 2 mm-diameter tips, it can well detect the force depending on the applied pressure. This indicated that the capacitive pressure sensor is a promising scheme for next generation flexible transparent touch screens which can provide multi-tasking capabilities through simultaneous multi-touch and multi-force sensing.

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.

Reliability of a Cobalt Silicide on Counter Electrodes for Dye Sensitized Solar Cells (코발트실리사이드를 이용한 염료감응형 태양전지 상대전극의 신뢰성 평가)

  • Kim, Kwangbae;Park, Taeyeul;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • Cobalt silicide was used as a counter electrode in order to confirm its reliability in dye-sensitized solar cell (DSSC) devices. 100 nm-Co/300 nm-Si/quartz was formed by an evaporator and cobalt silicide was formed by vacuum heat treatment at $700^{\circ}C$ for 60 min to form approximately 350 nm-CoSi. This process was followed by etching in $80^{\circ}C$-30% $H_2SO_4$ to remove the cobalt residue on the cobalt silicide surface. Also, for the comparison against Pt, we prepared a 100 nm-Pt/glass counter electrode. Cobalt silicide was used for the counter electrode in order to confirm its reliability in DSSC devices and maintained for 0, 168, 336, 504, 672, and 840 hours at $80^{\circ}C$. The photovoltaic properties of the DSSCs employing cobalt silicide were confirmed by using a simulator and potentiostat. Cyclic-voltammetry, field emission scanning electron microscopy, focused ion beam scanning electron microscopy, and energy dispersive spectrometry analyses were used to confirm the catalytic activity, microstructure, and composition, respectively. The energy conversion efficiency (ECE) as a function of time and ECE of the DSSC with Pt and CoSi counter electrodes were maintained for 504 hours. However, after 672 hours, the ECEs decreased to a half of their initial values. The results of the catalytic activity analysis showed that the catalytic activities of the Pt and CoSi counter electrodes decreased to 64% and 57% of their initial values, respectively(after 840 hours). The microstructure analysis showed that the CoSi layer improved the durability in the electrolyte, but because the stress concentrates on the contact surface between the lower quartz substrate and the CoSi layer, cracks are formed locally and flaking occurs. Thus, deterioration occurs due to the residual stress built up during the silicidation of the CoSi counter electrode, so it is necessary to take measures against these residual stresses, in order to ensure the reliability of the electrode.

Analysis of Heat Transfer Characteristics on Multi-layer Insulating Curtains Coated with Silica Aerogel (실리카 에어로겔이 흡착된 다겹보온커튼의 전열 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2019
  • The multi-layer insulating curtains used in the experiment was produced in six combinations using non-woven fabric containing aerogel and compared and analyzed by measuring heat flux and heat perfusion rates due to weight, thickness and temperature changes. Using silica aerogel, which have recently been noted as new material insulation, this study tries to produce a new combination of multi-layer insulating curtains that can complement the shortcomings of the multi-layer insulating curtains currently in use and maintain and improve its warmth, and analyze the thermal properties. The heat flux means the amount of heat passing per unit time per unit area, and the higher the value, the more heat passing through the multi-layer insulating curtain, and it can be judged that the heat retention is low. The weight and thickness of multi-layer insulation curtains were found to be highly correlated with thermal insulation. In particular, insulation curtains combined with aerogel meltblown non-woven fabric had relatively higher thermal insulation than insulation curtains with the same number of insulation materials. However, the aerogel meltblown non-woven fabric is weak in light resistance and durability, and there is a problem that the production process and aerogel are scattering. In order to solve this problems, the combination of expanded aerogel non-woven fabric and hollow fiber non-woven fabric, which are relatively simple manufacturing processes and excellent warmth, are suitable for use in real farms.

Techniques and Traditional Knowledge of the Korean Onggi Potter (옹기장인의 옹기제작기술과 전통지식)

  • Kim, Jae-Ho
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.2
    • /
    • pp.142-157
    • /
    • 2015
  • This study examines how traditional knowledge functions in the specific techniques to make pottery in terms of the traditional knowledge on the pottery techniques of Onggi potters. It focuses on how traditional pottery manufacturing skills are categorized and what aspects are observed with regard to the techniques. The pottery manufacturing process is divided into the preparation step of raw material, the molding step of pottery, and the final plasticity step. Each step involves unique traditional knowledge. The preparation step mainly comprises the knowledge on different kinds of mud. The knowledge is about the colors and properties of mud, the information on the regional distribution of quality mud, and the techniques to optimize mud for pottery manufacturing. The molding step mainly involves the structure and shape of spinning wheels, the techniques to accumulate mud, ways to use different kinds of tools, the techniques to dry processed pottery. The plasticity step involves the knowledge on kilns and the scheme to build kilns, the skills to stack pottery inside of the kilns, the knowledge on firewood and efficient ways of wood burning, the discrimination of different kinds of fire and the techniques to stoke the kilns. These different kinds of knowledge may be roughly divided into three categories : the preparation of raw material, molding, and plasticity. They are closely connected with one another, which is because it becomes difficult to manufacture quality pottery even with only one incorrect factor. The contents of knowledge involved in the manufacturing process of pottery focused are mainly about raw material, color, shape, distribution aspect, fusion point, durability, physical property, etc, which are all about science. They are rather obtained through the experimental learning process of apprenticeship, not through the official education. It is not easy to categorize the knowledge involved. Most of the knowledge can be understood in the category of ethnoscience. In terms of the UNESCO world heritage of intangible cultural assets, the knowledge is mainly about 'the knowledge on nature and universe'. Unique knowledge and skills are, however, identified in the molding step. They can be referred to 'body techniques', which unify the physical stance of potters, tools they employ, and the conceived pottery. Potters themselves find it difficult to articulate the knowledge. In case stated, it cannot be easily understood without the experience and knowledge on the field. From the preparation of raw material to the complete products, the techniques and traditional knowledge involved in the process of manufacturing pottery are closely connected, employing numerous categories and levels. Such an aspect can be referred to as a 'techniques chain'. Here the techniques mean not only the scientific techniques but also, in addition to the skills, the knowledge of various techniques and levels including habitual, unconscious behaviors of potters.