• Title/Summary/Keyword: durability properties

Search Result 1,602, Processing Time 0.032 seconds

Experimental Study on Strength of Austentic Stainless Steel (STS 304L) Fillet-Welded Connection with Weld Metal Fracture According to Welding Direction (용접방향에 따른 오스트나이트계 스테인리스강(STS304L) 용착금속파단 용접접합부의 내력에 관한 실험적 연구)

  • Kim, Tae Soo;Lee, Hoochang;Hwang, Bokyung;Cho, Taejun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Austenitic stainless steels have excellent corrosion resistance, durability and fire resistance. Especially, since STS304L among austenitic types is a low-carbon variation of STS304 and has excellent intergranular corrosion resistance, it can often be used under the welded condition without heat treatment after field welding. This paper investigated ultimate behaviors such as ultimate strength and weld metal fracture mechanism of STS304L fillet-welded connections with TIG(tungsten inert gas) welding through test results. Main variables of specimens are weld length and welding direction against loading. Fracture of specimens are classified into three modes(tensile fracture, shear fracture and block shear fracture). Ultimate strengths were compared according to the welding direction and weld length and TFW series with transverse fillet weld had the highest strength compared with other types(LFW series with longitudinal fillet weld and FW series with all round weld). It is known that current design specifications such as KBC 2016 and AISC2010 underestimated the strength of TFW and LFW specimens and provided unconservative estimates for FW specimens. Finally, strength equations were proposed considering material properties of STS 304L material.

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.

Pore Structure Modification and Characterization of Porous Alumina Filter with Chemical Vapor Infiltration (CVI) SiC Whisker (화학증착 탄화규소 휘스커에 의한 다공성 알루미나 필터의 기공구조 개질 및 특성 평가)

  • 박원순;최두진;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.518-527
    • /
    • 2004
  • In this study, SiC whiskers were grown in porous alumina substrate in order to enhance the filtering efficiency, performance, and durability by controlling pore morphology. This experiment was performed by Chemical Vapor Infiltration (CVI) in order to obtain the whiskers on the inside of pores as well as on the surface of porous the A1$_2$O$_3$ substrate. The deposition behavior was changed remarkably with the deposition position, temperature, and input gas ratio. First, the mean diameter of whisker was decreased as the position of observation moved into the inside of substrate due to the reactant gas depletion effect'. Second, the deposition temperature caused the changes of the deposition type such as debris, whiskers and films and the change in morphology affect the various properties. When SiC films were deposited. the gas permeability and the specific surface area decreased. However, the whisker showed the opposite result. The whiskers increase not only the specific surface area and minimizing pressure drop but also mechanical strength. Therefore it is expected that the porous alumina body which deposited the SiC whisker is the promising material for the filter trapping the particles.

Development of Structural Glued Laminated Timber with Domestic Cedar (국산 삼나무를 이용한 구조용 집성재 이용기술)

  • Kim, Kwang-Mo;Shim, Sang-Ro;Shim, Kug-Bo;Park, Joo-Saeng;Kim, Wun-Sub;Kim, Byoung-Nam;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.184-191
    • /
    • 2009
  • In the southern part of the Korean Peninsula including Jeju-island, the production amount of domestic cedar has increased gradually. However, their low qualities, expected to be caused by the low density and frequent knots, have restricted their practical utilization as the high value-added products. In this study, it is aimed to look for the new uses of domestic cedar and to examine the applicability for lamination lumbers of structural glued laminated timber (glulam). Above all, machine stress ratings for individual sawn lumbers confirmed that modulus of elasticity (MOE) of cedar lumber was lower than that of other common softwood species in Korea. On the other hand, cedar lumbers have enough stiffness to manufacture the structural glulam in accordance with Korean Industrial Standard (KS). The bonding strength and durability also met the KS limitation. Nevertheless, from the result of bending tests for cedar glulam, it was shown that the modulus of elasticity (MOE) did not meet the KS limitation. Therefore, it was concluded that additional researches were needed for reinforcing the stiffness of cedar glulam.

A Study on Microstructure, Mechanical Properties, Friction and Adhesion of TiN Thin Films Coated on SKD61 and Radical Nitrided SKD61 Substrates by Arc Ion Plating (SKD61과 Radical Nitriding 처리된 SKD61 기판상에 Arc Ion Plating으로 증착된 TiN 박막의 미세구조 및 기계적 특성, 마찰 및 접착력에 관한 연구)

  • Joo, Yun-Kon;Yoon, Jae-Hong;Fang, Wei;Zhang, Shi-Hong;Cho, Tong-Yul;Ha, Sung-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.6
    • /
    • pp.254-257
    • /
    • 2007
  • TiN coating on tool steel has been widely used for the improvement of durability of tools. In this work, radical nitriding(RN) is carried out on SKD61 at $450^{\circ}C$ for 5 hours in the ammonia gas pressure $2.7{\times}10^3\;Pa$. The TiN coating is carried out by arc ion plating(AIP) with the process parameters: arc power 150 A, bias voltage -50V, coating time 40 minutes and nitrogen gas pressure $4{\times}10^3\;Pa$. Hardness, elastic modulus, friction coefficient and adhesion of TiN coating on substrates of both TiN/SKD61 and TiN/RN SKD61 coatings are investigated comparatively. The primary crystalline faces of TiN surface are(200) and(111) for TiN/SKD61 and TiN/RN SKD61 respectively. In addition to the primary phase, Fe phase exists in TiN/SKD61 coating, but not in TIN/RN SKD61. The hardness of TiN/RN SKD61 is about 700 Hv, 250 Hv(56%) higher than that of TiN/SKD61 at the near interface of TiN and substrates. At the TiN surface, hardness of TiN/RN SKD61 is 2,149 Hv, 71 Hv(3%) higher than that of TiN/SKD61. The elastic modulus of TiN coating is improved to 26.7 GPa(6%) by radical nitriding. The adhesion is improved by the RN coating showing no spalling. buckling and chipping on the scratch test track which are shown on the non-RN TiN/SKD61.

Surface Properties of Color Concrete Using Acid Stained Agent (표면 착색용 산화제를 사용한 컬러 콘크리트의 표면 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Park, Hyo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.265-272
    • /
    • 2011
  • Even though concrete is the most important material for building structures, its intrinsic gray color degrades urban esthetics. In order to improve this problem, coloring methods of mixing pigment in concrete batch and painting the surface of concrete surface have been tried. However, applications of the coloring methods in construction field are difficult due to high cost and low durability. Recently, acid stain agent is emerging as a new coloring method for concrete. It is able to apply a remarkably thin colored layer on a concrete surface from chemical reaction between acid and alkaline solutions. This study has examined the changes and variations of the surface layer of mortar specimen from chemical reaction of acid stained agents. The colors were changed into natural irregular stains according to aging. After the staining, no shape change was found from visible inspections. Microstructure of the colored surface applied with acid stained agent was much rougher than that of original mortar. When the colored layer was compared to original surface, crystals of hydrate such as $Ca(OH)_2$ and C-S-H gel were observed. Surface hardness was same or slightly higher in the colored layer. The value of pH was reduced by approximately 10%, weight contents of elements such as Ca, Si, and Al were low. In the chemical composition of the colored layer, the non-cement based elements of Mn, Cr, and Cu increased. Also, Fe and alkali elements of K and Na increased.

Effect of the Radius of Curvature on the Contact Pressure Applied to the Endplate of the Sliding Core in an Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 곡률반경 변화가 종판의 접촉압력에 미치는 영향)

  • Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The treatments for spinal canal stenosis are radicular cyst removal, spine fusion, and implantation of an artificial intervertebral disc. Artificial intervertebral discs have been most widely used since the mid-2000s. The study of artificial intervertebral discs has been focused on the analysis of the axial rotation, lateral bending, the degrees of freedom of the disc, and flexion-extension of the vertebral body. The issue of fatigue failure years after the surgery has arisen as a new problem. Hence, study of artificial intervertebral discs must be focused on the fatigue failure properties and increased durability of the sliding core. A finite element model based on an in the artificial intervertebral disc (SB Charit$\acute{e}$ III) was produced, and the influence of the radius of curvature and the change in the coefficient of friction of the sliding core on the von-Mises stress and contact pressure was evaluated. Based on the results, new artificial intervertebral disc models (Models-I, -II, and -III) were proposed, and the fatigue failure behavior of the sliding core after a certain period of time was compared with the results for SB Charit$\acute{e}$ III.

Chemical Resistance Characteristics of the Chlorinated Polyvinyl Chloride Microfiltration Flat-sheet Membrane with respect to Immersion Time (침지시간에 따른 Chlorinated Polyvinyl Chloride 정밀여과용 평막의 내화학적 특성)

  • Ryu, Jae-Sang;Son, Jae-Ik;Kim, Hee-Jun;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.324-332
    • /
    • 2009
  • This study aimed to measure chemical resistance properties of the microfiltration flat-sheet membrane made by Chlorinated Polyvinyl Chloride (CPVC) with respect to the immersed time. The solutions of effective chlorine 0.5 wt% NaClO, HCl 1 wt% and pH 4 buffer under acidic condition, NaOH 4 wt% and pH 10 buffer under alkine condition were used as widely applied chemicals for membrane washing. The CPVC membrane samples were immersed in the above chemical solutions during 1, 3, 5 and 10 days at 5, 25 and $50^{\circ}C$, respectively. After then, the tensile strength and elongation at break as the chemical durability for the samples were measured and evaluated. The tensile strength decreased within 5% at $5^{\circ}C$, but decreased up to 17% at 25 and $50^{\circ}C$ for 0.5 wt% NaClO solution mainly used for membrane cleaning. The chemical resistance of CPVC membrane was good enough for HCl 1 wt% and pH 4 buffer acid solutions, but the most vulnerable for NaOH 4 wt% solution.

Strength of Recycled Concrete with Furnace Slag Cement under Steam Curing Condition (순환골재 및 고로슬래그 시멘트를 사용한 증기양생 콘크리트의 강도 특성)

  • Lee Myung-Kue;Kim Kwang-Seo;Lee Keun-Ho;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.613-620
    • /
    • 2005
  • There are some problems in utilizing recycled concrete aggregate go structural use because of the difficulties concerning about quality control and durability. It seems to be possible to utilize recycled concrete aggregate for making concrete products because quality control of concrete products is easier than ready-mixed concrete, but there are little studies about the properties of the steam-cured recycled aggregate concrete. In this study, various tests were performed such as compressive strength, flexural strength, splitting tensile strength, bonding strength and chloride ion penetration test to evaluate the effect of substitution of recycled concrete aggregate. The results of strength test showed that the concrete strength decreased with the increase of the substitution ratio of recycled concrete aggregate, but it was in the reasonable range and almost equal to that of normal concrete below the substitution ratio of $50\%$. On the other hand, strength test of furnace slag cement concrete shows that the strength of recycled concrete with furnace slag cement under curing condition lower than that of recycled concrete with ordinary portland cement under same condition. From the result of this study, it can be concluded that recycled concrete aggregate is able to be utilized for structural use but substitution ratio should be decided with care in each case. The result of this study could be used as the basic data for the structural use of recycled concrete aggregate.

Physicochemical Properties of Cement Paste Containing Mg(OH)2 Cured by CO2 curing Method (CO2 양생을 이용한 Mg(OH)2 혼입 시멘트 페이스트의 물리화학적 특성)

  • Chen, Zheng-Xin;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.203-210
    • /
    • 2018
  • Corrosion of the rebar is one of the main factors affecting the durability of reinforced concrete in the world which lead to the failure of the reinforced concrete structures. In this research, a new method of fixing $CO_2$ is practiced to improve the carbonation resistance of the concrete. Brucite($Mg(OH)_2$), a kind of common $CO_2$ fixation materials, was added into ordinary Portland cement paste. Samples containing 0%, 5%, 10%, and 15% $Mg(OH)_2$ were exposed to an accelerated carbonation curing regime with 20% concentration of $CO_2$, 60% relative humidity, and a temperature of $20^{\circ}C$ until tested at 3d, 7d, 14d and 28d. After 28d of $CO_2$ accelerated curing, in the paste containing $Mg(OH)_2$, magnesian calcite was detected by SEM-EDX. Meanwhile, the paste containing $Mg(OH)_2$ exhibit the better pore distribution than ordinary Portland cement paste and the compressive strength of the cement paste containing $Mg(OH)_2$ were more than 50Mpa.