• Title/Summary/Keyword: durability of concrete

Search Result 2,166, Processing Time 0.023 seconds

Corrosion of Rebar by Chlorides and Concrete Durability

  • Hong, Naifeng
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.127-130
    • /
    • 2004
  • Throughout the world, corrosion of rebar in concrete is a main form for concrete building destruction. The chloride is prime criminal. This paper presents the harm of chloride corrosion in China, the effect of chloride corrosion on the durability of concrete buildings and protection strategies for rebar corrosion.

Reliability-based Model of Durability Failure for Harbor Concrete Structure (항만 콘크리트 구조물의 내구성 파괴확률 예측을 위한 신뢰성 모델)

  • Han, Sang-Hun;Park, Woo-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.471-474
    • /
    • 2005
  • Reliability-based durability model was developed to consider the uncertainty of analysis variables in durability model for harbor concrete structures. The durability analysis program based on Finite Element Method (FEM) was modified adopting the reliability concept to estimate the probability of durability failure. Water-cement ratio in the durability analysis is the most important factor influencing chloride diffusion coefficient, evaporable water, etc. The probability distribution of water-cement ratio was calculated converting standard deviations of compressive strength in Concrete Standard Code to those of water-cement ratio. Based on the Monte Carlo Simulation, the probabilities of penetration depth and durability failure were calculated.

  • PDF

A study on Probability-based Durability Design of Concrete Structures subjected to Chloride Attack (확률론적 방법을 적용한 콘크리트 구조물의 염해 내구성 설계에 관한 연구)

  • Kim Won-Dong;Song Ha-Won;Byun Kun-Joo;Pack Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.161-164
    • /
    • 2005
  • A probability-based durability design which minimizes the uncertainties on durability parameters of concrete is proposed for reinforced concrete structures subjected to chloride attack. The uncertainties of various factors such as water-cement ratio, curing temperature, age of concrete and the variation of these factors which affect chloride ion diffusion are considered. For the durability design, a probability-distribution function for each factor is obtained and a program which combines Fick's 2nd law and Monte Carlo simulation is developed. The durability design method proposed in this study considers probability of durability limit and probability of the concentration of chloride ion, so that the probability-based deterioration prediction is possible.

  • PDF

An Experimental Study on the Improvement of Durability for Face Slab Concrete in CFRD (CFRD 표면 차수벽 콘크리트의 내구성 향상에 관한 실험 연구)

  • 우상균;송영철;원종필;윤영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1017-1022
    • /
    • 2001
  • Dam concrete for pumped storage power plants should have sufficient durability in repetitive wet and dry conditions and abrasion due to water level fluctuation and also in freezing and thawing resistance as well as permeability capacity. This study presents various experimental results to enhance the durability of face slab concrete in CFRD(concrete faced rockfill dam) by varying the fly ash substitution such as 0%, 15%, 20% and 25% and polypropylene such as 0%, 0.1%. The effect on durability of concrete corresponding to the increasing amount of fly ash and polypropylene was evaluated and the optimum quantity of fly ash and polypropylene substitution was recommended. The results show that 20% of fly ash substitution and 0% of polypropylene were found out to be an optimum quantity to achieve excellent performances in durability for face slab concrete in CFRD.

  • PDF

Durability Evaluation of Ternary Blend Concrete Mixtures adding Ultra Fine Admixture (고분말도 혼화재를 첨가한 삼성분계 시멘트 콘크리트의 내구성 평가)

  • Ahn, Sang Hyeok;Jeon, Sung Il;Nam, Jeong-Hee;An, Ji Hwan
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.101-110
    • /
    • 2013
  • PURPOSES : The purpose of this study is to evaluate the durability of ternary blended concrete mixtures adding ultra fine admixture. METHODS : From the literature review, crack was considered as the main distress failure criterion on concrete bridge deck pavement. To reduce the initial crack development due to drying shrinkage, CSA expansion agent and shrink reduction agent were used to ternary blended concrete mixtures as a admixture. Laboratory tests including chloride ion penetration test, surface scaling test, rapid freeze & thaw resistance test, non restrained drying shrinkage and restrained drying shrinkage test were conducted to verify the durability of ternary blended concrete mixtures. RESULTS : Based on the test results, proposed mixtures were verified as high qualified durable materials. Expecially initial drying shrinkage crack was not occurred in ternary blended concrete mixtures with CSA expansion agent. CONCLUSIONS : It is concluded that the durability of proposed ternary blend concrete mixture was acceptable to apply for the concrete bridge deck pavement.

Optimal mix design of air-entrained slag blended concrete considering durability and sustainability

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Slag blended concrete is widely used as a mineral admixture in the modern concrete industry. This study shows an optimization process that determines the optimal mixture of air-entrained slag blended concrete considering carbonation durability, frost durability, CO2 emission, and materials cost. First, the aim of optimization is set as total cost, which equals material cost plus CO2 emission cost. The constraints of optimization consist of strength, workability, carbonation durability with climate change, frost durability, range of components and component ratio, and absolute volume. A genetic algorithm is used to determine optimal mixtures considering aim function and various constraints. Second, mixture design examples are shown considering four different cases, namely, mixtures without considering carbonation (Case 1), mixtures considering carbonation (Case 2), mixtures considering carbonation coupled with climate change (Case 3), and mixtures of high strength concrete (Case 4). The results show that the carbonization is the controlling factor of the mixture design of the concrete with ordinary strength (the designed strength is 30MPa). To meet the challenge of climate change, stronger concrete must be used. For high-strength slag blended concrete (design strength is 55MPa), strength is the control factor of mixture design.

Study on durability of densified high-performance lightweight aggregate concrete

  • Wang, H.Y.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.499-510
    • /
    • 2007
  • The densified mixture design algorithm (DMDA) was employed to manufacture high-performance lightweight concrete (LWAC) using silt dredged from reservoirs in southern Taiwan. Dredged silt undergoing hydration and high-temperature sintering was made into a lightweight aggregate for concrete mixing. The workability and durability of the resulting concrete were examined. The LWAC made from dredged silt had high flowability, which implies good workability. Additionally, the LWAC also had good compressive strength and anti-corrosion properties, high surface electrical resistivity and ultrasonic pulse velocity as well as low chloride penetration, all of which are indicators of good durability.

A Model for Reliability-Based Durability Assessment of PC BOX Girder Bridges (신뢰성에 기초한 PC박스거더교의 내구성평가 모형)

  • 조효남;이승재;이정곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.286-291
    • /
    • 1995
  • The deterioration of PC box girder may cause serious effect on the durability of PC structure compared to that of RC structures. In the durability assessment of PC box girder bridges, a quantitive model on crack width is considered as a measure of durability. This study suggests a durability limit state model for PC box girder bridges. This durability limit state model in formulated based on the conventional models on the cracks in concrete. And the allowable crack width is taken as an assumed value established by the design specification or provided by the maintenance authority of the structure.

  • PDF

Durablity Test and Field Application of Marine Concrete (항만콘크리트의 내구실험과 현장적용)

  • 강희철;정원기;이규정;박우선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.676-681
    • /
    • 2000
  • This paper covers durability and field application of marine concrete which have been enhanced the resistance against deterioration in seawater. Fly ash concrete is applied to make the concrete with good durability. It is well known fly ash in concrete has a good performance preventing fro a sulphate attack and a steel corrosion. Several durability tests were performed to find characteristics of marine concrete which is proposed in this paper comparing with normal concrete. Field application was executed to compare results with laboratory test and to give a reliability to engineers. The project was supported by Ministry of Marine Affairs and Fisheries for two years.

  • PDF

Durability studies on concrete with partial replacement of cement and fine aggregates by fly ash and tailing material

  • Sunil, B.M.;Manjunatha, L.S.;Yaragalb, Subhash C.
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.671-683
    • /
    • 2017
  • Commonly used concrete in general, consists of cement, fine aggregate, coarse aggregate and water. Natural river sand is the most commonly used material as fine aggregate in concrete. One of the important requirements of concrete is that it should be durable under certain conditions of exposure. The durability of concrete is defined as its ability to resist weathering action, chemical attack or any other process of deterioration. Durable concrete will retain its original form, quality and serviceability when exposed to its environment. Deterioration can occur in various forms such as alkali aggregate expansion, freeze-thaw expansion, salt scaling by de-icing salts, shrinkage, attack on the reinforcement due to carbonation, sulphate attack on exposure to ground water, sea water attack and corrosion caused by salts. Addition of admixtures may control these effects. In this paper, an attempt has been made to replace part of fine aggregate by tailing material and part of cement by fly ash to improve the durability of concrete. The various durability tests performed were chemical attack tests such as sulphate attack, chloride attack and acid attack test and water absorption test. The concrete blend with 35% Tailing Material (TM) in place of river sand and 20% Fly Ash (FA) in place of OPC, has exhibited higher durability characteristics.