• Title/Summary/Keyword: durability factor

Search Result 445, Processing Time 0.025 seconds

The Estimation of Durability Factor of Deteriorated Jointed Concrete Pavement Using Image Analysis Test (화상분석 실험을 이용한 열화된 줄눈콘크리트 포장의 내구성 지수 평가)

  • Choi, Pan-Gil;Kim, Yong-Gon;Yun, Kyong-Ku;Kwon, Soo-Ahn
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.31-38
    • /
    • 2009
  • The primary objective of this study was to estimate the deterioration degree of jointed concrete pavement which was major concrete pavement type in Korea. First of all, visual survey of concrete pavement was performed to observe deterioration types. In the result of visual survey, the majority of concrete pavement deterioration was investigated in joint area. It is appeared that most of the distresses are durability cracking and joint distress. Second, concrete core specimens were taken from eight locations including good section (4 locations) and bad section (4 locations) based on visual survey. The deterioration reasons of concrete pavement were analyzed with ultrasonic pulse velocity test, splitting tensile strength test, and image analysis for concrete core specimens. Among the image analysis test result for 21 concrete core specimens, only two specimens satisfied the Kansas DOT criteria of spacing factor, $250\;{\mu}m$, and the remains of 19 specimens were estimated to be above $250\;{\mu}m$. The durability factor of concrete was estimated very low. As a result, it was analyzed that the main deterioration reason of the deteriorated jointed concrete pavement was to be freezing and thawing damages.

Feasibility Study the Assessment Factor of Quality Performance Index in Expressway Concrete Pavement (고속도로 콘크리트 포장에 대한 품질평가지수 평가인자의 적정성 검토)

  • Lee, Seung Woo;Kim, Gyung il;Ko, Dong Sig;Hong, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.133-141
    • /
    • 2017
  • Traffic volume increases according to highway expansion and industrial development which causes repetitive defect and durability degradation on pavement. The research of quality assurance system used abroad has introduced Korea. Korea Expressway Corporation (KEC) has developed a Quality Performance Index (QPI) that quantitatively assesses the level of quality of the final product, and practical applications. Assessment factor on concrete pavement consisted of pavement thickness, compressive strength, IRI and spacing factor. Assessment factor on concrete pavement is determined by empirical evaluation factor from abroad. In this study, analysis of evaluation factors of concrete pavement by using pavement life prediction simulation and measured data were evaluated with consideration of feasibility of the assessment factor. Pavement life, performance and durability are affected by pavement thickness, compressive strength, IRI and spacing factor in assessment factor on concrete pavement, QPI.

Resistance to Freezing and Thawing on Concrete with Recycled Aggregate (재생골재를 사용한 콘크리트의 내동해성)

  • 문대중;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.85-88
    • /
    • 2001
  • Utilization of demolished-concrete as recycled aggregate has been researched for the purpose of substituing for insufficient natural aggregate, saving resources and protecting environment. There, however, are some problems that qualities of recycled aggregates are not only largely diverse, but also mechanical properties of recycled aggregate concrete decrease a little in comparison with those of natural aggregate concrete. In this study, the resistance to freezing and thawing of recycled aggregate concrete was highly different due to adhered mortar on recycled aggregate, and durability factor of concrete with NA SRA and DRA was decreased more than that of control concrete. However, durability factor of concrete with AA SRA was larger than that of control concrete.

  • PDF

Analysis of the Effect of Casting Residual Stress on Durability by a Combination of Different Numerical Methods (이종해석 연계 기법을 통한 주조 잔류응력이 내구성에 미치는 영향 분석)

  • Cheon, Jinho;Park, Yongho;Park, Ikmin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.468-473
    • /
    • 2011
  • Determining the residual stress during casting processes is important for evaluating the mechanical properties and strength of materials and to optimize manufacturing conditions. In this study, we propose a field data interface procedure between FDM and FEM in a 3-dimensional space for analyzing the casting process and structural analysis. The casting process was analyzed using FDM and the data of the temperature distribution were converted into a format suitable for FEM analysis to calculate the thermal stress and safety factor by tightening force. The results of the coupled analysis between FDM and FEM showed that casting residual stress is an important factor in predicting life time and evaluating durability.

Structural Analysis for Optimal Design of Anchor Bolts and Brackets for Fixing External Finishing Materials (외부마감재 고정용 앙카볼트 및 브라켓의 최적설계를 위한 구조해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.91-96
    • /
    • 2020
  • For the anchor bolts and brackets that fix the stone wall, which is an external finishing material, it is necessary to maintain the performance required for the mechanical structure from the initial design stage and secure high durability. For this, the design and safety evaluation in consideration of the load conditions are necessary, so the structural analysis applying the finite element analysis technique was performed as a method to verify durability. As a result of structural analysis for various shapes for optimal design, a reinforcing structure was added to alleviate the maximum stress generated at the rear part of the bracket in contact with the bolt. In addition, a reinforcing plate was additionally attached to the bracket to relieve the stress concentration of the L-shaped bracket to make the stress distribution uniform, so that the safety factor satisfies the standard conditions. In addition, the fatigue life analysis by cyclic load was performed, and the fatigue safety factor was analyzed. As a result, the durability was obtained.

Effect of Ramping Rate on the Durability of Proton Exchange Membrane Water Electrolysis During Dynamic Operation Using Triangular Voltage Cycling

  • Hye Young Jung;Yong Seok Jun;Kwan-Young Lee;Hyun S. Park;Sung Ki Cho;Jong Hyun Jang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.253-260
    • /
    • 2024
  • Proton exchange membrane water electrolysis (PEMWE) is an efficient method for utilizing renewable energy sources such as wind and solar powers to produce green hydrogen. For PEMWE powered by renewable energy sources, its durability is a crucial factor in its performance since irregular and fluctuating characteristics of renewable energy sources, especially for wind power, can deteriorate the stability of PEMWE. Triangular voltage cycle is well able to simulate fluctuating wind power, but its effect on the durability has not been investigated extensively. In this study, the performance degradation of the PEMWE cell operated with the triangular voltage cycling was investigated at different ramping rates. The measured current responses during the cycling gradually decreased for both ramping rates, and I-V curve measurements before and after the cycling confirmed the degradation of the performances of PEMWE. For both measurements, the degradation rate was larger for 300 mV s-1 than 30 mV s-1, and they were determined as 0.36 and 1.26 mV h-1 (at the current density of 2 A cm-2) at the ramping rates of 30 and 300 mV s-1, respectively. The comparison with other studies on triangular voltage cycling also indicate that an increase in the ramping rate accelerates the deterioration of the PEMWE performance. X-ray photoelectron spectroscopy and transmission electron microscopy results showed that the Ir catalyst was oxidized and did not dissolve during the voltage cycling. This study suggests that the ramping rate of the triangular voltage cycling is an important factor for the evaluation of the durability of PEMWE cells.

The Optimization of Rear Suspension Using Hydroforming (하이드로포밍을 이용한 후륜 현가장치 최적설계)

  • Oh, J.H.;Choi, H.H.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.481-485
    • /
    • 2008
  • The subframe type rear suspension consisting of a side member and a front/rear cross member is widely used in a medium car and full car. In the small car case, the beam of tubular type without independent suspension system is used to reduce manufacturing cost. In this study, a subframe type rear suspension by hydroforming has been developed. In designing suspension, a driving stability and durability should be considered as an important factor for the performance improvement, respectively. Thus, we focus on increasing the stiffness of suspension and decreasing the maximum stress affecting a durability cycle life. Several optimization design techniques such as shape, size, and topology optimization are implemented to meet these requirements. The shapes of rear suspension obtained from optimization are formed by using hydroforming process. Through commercial software based on the finite element, the superiority of this design method is demonstrated.

Durability Analysis through the Radiation of Heat of a Laptop (노트북에서의 방열을 통한 내구성 해석에 관한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.89-94
    • /
    • 2016
  • This study investigates the durability of the radiator and cooler of a laptop through a thermal analysis. In the result of this study, the maximum deformation happened at the part holding up the support stand at the radiator and cooler. The maximum thermal stress of the cooler was 60.939 Mpa, as low as that of the radiator. In addition, the safety factor of the cooler was 1.64 times as high as that of the radiator. The radiator of the laptop was less durable than the cooler. The result of this study could help with designing a laptop model with a durable radiator and cooler.

A Study on a Performance evaluation for Quality Liguid Siliceous of waterproof agent using on the concrete Structure (콘크리트구조물에 적용하는 액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • Kang Hyo Jin;Kwon Shi-Won;Oh Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.184-187
    • /
    • 2004
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs to improve durability of structure. This study separately examined physical and chemical specific of quality liguid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

Time-Dependent Deformation and Durability of High-Strength Concrete over 60MPa for PSC Bridges (PSC 교량용 설계강도 60MPa 이상 고강도 콘크리트의 실용화를 위한 시간의존적 변형 및 내구성에 관한 연구)

  • Yang, Jun-Mo;Lee, Joo-Ha;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.5-8
    • /
    • 2006
  • In this study, various fundamental experiments including durability and time-dependent deformation are performed to compile a database for a utilization of high-strength concrete for PSC bridges. In the mix design, concrete strength at early age when prestressing forces are introduced to the PSC member and slumpflow suitable for pumping of concrete are considered to make a concrete fit for PSC bridges. The main parameters investigated are the kinds and replacement ratios of mineral admixtures and low-heat cement. Experimental tests on durability include penetration of chloride ions, freezing-thawing, combined deterioration, and simple adiabatic temperature rise test. In addition, time-dependent deformation such as creep, drying and autogenous shrinkage, which is particularly important factor in the design and construction of PSC bridges, is tested and analyzed.

  • PDF