• Title/Summary/Keyword: durability factor

Search Result 445, Processing Time 0.024 seconds

Freezing and Thawing Properties of High Strength Concrete Using Recycled Coarse Aggregate (재생굵은골재를 사용한 고강도 콘크리트의 동결융해 특성)

  • Sung , Chan-Yong;Im , Sang-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.59-66
    • /
    • 2004
  • This study was performed to evaluate the freezing and thawing properties of the high strength concrete using recycled coarse aggregate. The recycled coarse aggregate replaced natural crushed aggregate by 0%, 25%, 50%, 75% and 100%. The compressive strength of the concrete using recycled coarse aggregate showed more than 300 kgf/$cm^2$ at the curing age 28 days. The mass loss ratio by freezing and thawing was less than 1% at all mix type. The relative dynamic modulus of elasticity was decreased with increasing the freezing and thawing cycles. Also, the durability factor by the freezing and thawing was decreased with increasing the content of recycled coarse aggregate. But, the recycled concrete except 100% recycled coarse aggregate showed 60 or more durability factor in the freezing and thawing 300 cycles. Accordingly, these recycled coarse aggregate can be used for high strength concrete.

Effect of Air Void System of High Strength Concrete on Freezing and Thawing Resistance (고강도콘크리트의 동결융해저항에 미치는 기포조직의 영향)

  • 김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.89-96
    • /
    • 1992
  • It is generally known that the frost-resistance of concrete is much affected by the air content in concrete and by the air void system or air distribution. And also the frost-resistance is believed to vary with the stre¬ngth of concrete. This article is prepared to describe, based on experiment, the effect of the air content and the air void system, particularly the effect of the spacing factor, on the freeze-thaw resistance of the high strength conc¬rete. For this purpose, I first worked on Non-AE concrete to make its compressive strength set about 400 to 500 kg/em'. However, the freeze-thaw test on the Non-AE concrete resulted in low durability factor, I.e., 10-2~0%. Thus to enhance the durability, another supplementary step was needed. I used AE admixture. which enhanced durability by changing the air content from 2% to 12%. The frost-thaw test was then performed 500 cycles on the 20 kind of concrete mixtures which differ in unit cement content and in water-cement ratio. Keywords : frost -resistance, air content, air void system, air distribution, spacing factor, freeze-thaw test, dur ability factor. capillary cavity, Linear Traverse Method.

Reliability-based Model of Durability Failure for Harbor Concrete Structure (항만 콘크리트 구조물의 내구성 파괴확률 예측을 위한 신뢰성 모델)

  • Han, Sang-Hun;Park, Woo-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.471-474
    • /
    • 2005
  • Reliability-based durability model was developed to consider the uncertainty of analysis variables in durability model for harbor concrete structures. The durability analysis program based on Finite Element Method (FEM) was modified adopting the reliability concept to estimate the probability of durability failure. Water-cement ratio in the durability analysis is the most important factor influencing chloride diffusion coefficient, evaporable water, etc. The probability distribution of water-cement ratio was calculated converting standard deviations of compressive strength in Concrete Standard Code to those of water-cement ratio. Based on the Monte Carlo Simulation, the probabilities of penetration depth and durability failure were calculated.

  • PDF

A Study of Valve-train Life Time Estimate in Engine Durability Test (2) (엔진내구시험을 통한 Valve Train 수명예측에 관한 연구 (2))

  • Kim, Jaejin;Lee, Hwanhui;Myung, Wanghee;Min, Byengdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.75-80
    • /
    • 2014
  • In previous study, make an attempt to estimate exhaust valve seat and seat-ring wear acceleration factor for engine durability test with measuring and consideration of wear mechanism. But found abnormal initial wear rate in exhaust valve seat-ring. And have to improve exhaust valve seat-ring wear rate for reliability reason, because next GDI/Turbo engine is based on this engine and GDI/Turbo engine have higher combustion pressure and higher thermal load. In this study, Trying to find the cause of abnormal wear factor, improve valve-train durability by change specification & design of parts and verify variant parts for improving durability of valve-train. And then I would like to propose a design guide line of valve-train system in a reliability point of view, besides make a complement of previous study.

Design of Front Lower Control Arm Considering Buckling Strength and Durability Strength

  • Lee, Dong-Chan;Kim, Young-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.77-84
    • /
    • 2010
  • Recently, the concept of structural design against instability has been proposed in the chassis parts. The design considerations of lower control arm of chassis parts under the buckling and durability strengths are the general. More precisely, this paper considers a specific application and associated optimization problem for two strengths, where the design variables are the physical or geometric dimensions for skins and stiffeners. The objective is the minimization of the total weight, while optimization constrains involve reserve or improve factors for the buckling and durability strengths. The most important features are related to the numerical simulations for the estimation of buckling factor and their sensitivities by means of nonlinear and linear finite element analyses. The bucking and durability strength analyses, and the morping geometries are directly included in the optimization problem and the modified design is formulated. As a result, the optimal structure with stable behavior is obtained or increases the buckling and durability strengths of parts. Most of design problems for structures exposed to elastic instability can be formulated and solved.

  • PDF

Influence of supplementary cementitious materials on strength and durability characteristics of concrete

  • Praveen Kumar, V.V.;Ravi Prasad, D.
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.75-85
    • /
    • 2019
  • The present study is focused on the mechanical and durability properties of ternary blended cement concrete mix of different grades 30 MPa, 50 MPa and 70 MPa. Three mineral admixtures (fly ash, silica fume and lime sludge) were used as a partial replacement of cement in the preparation of blended concrete mix. The durability of ternary blended cement concrete mix was studied by exposing it to acids HCl and $H_2SO_4$ at 5% concentration. Acid mass loss factors (AMLF), acid strength loss factor (ASLF) and acid durability factor (ADF) were determined, and the results were compared with the control mix. Chloride ions penetration was investigated by conducting rapid chlorination penetration test and accelerated corrosion penetration test on control mix and ternary blended cement concrete. From the results, it was evident that the usage of these mineral admixtures is having a beneficiary role on the strength as well as durability properties. The results inferred that the utilization of these materials as a partial replacement of cement have significantly enhanced the compressive strength of blended concrete mix in 30 MPa, 50 MPa and 70 MPa by 42.95%, 32.48% and 22.79%. The blended concrete mix shown greater resistance to acid attack compared to control mix concrete. Chloride ion ingress of the blended cement concrete mix was low compared to control mix implying the beneficiary role of mineral admixtures.

Vibration Fatigue Analysis of Automotive Fuel Tank Using Transfer Function Method (Transfer Function Method를 이용한 자동차 연료탱크의 진동 피로 해석에 대한 연구)

  • Ahn, Sang Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.27-33
    • /
    • 2020
  • In this paper, the process of predicting efficient durability performance for vibration durability test of automobile parts using vibration test load on automobile fuel tank is presented. First of all, the common standard load that can be applied to the initial development process of the automobile was used for the fuel tank and the vulnerability of the fuel tank to the vibration fatigue load was identified through frequency response analysis. In addition, the vulnerability of the fuel tank was re-enacted through vibration durability test results, and the scale factor was applied to the standard load. In order to predict the vibration durability performance required for detailed design, vibration fatigue analysis was performed on the developed vehicle with the frequency of vibration severity equivalent to the durability test, and the vulnerability and life span of the fuel tank were identified through the process of applying weights to these selected standard loads, thereby reducing the test time of the development vehicle.

A study on Probability-based Durability Design of Concrete Structures subjected to Chloride Attack (확률론적 방법을 적용한 콘크리트 구조물의 염해 내구성 설계에 관한 연구)

  • Kim Won-Dong;Song Ha-Won;Byun Kun-Joo;Pack Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.161-164
    • /
    • 2005
  • A probability-based durability design which minimizes the uncertainties on durability parameters of concrete is proposed for reinforced concrete structures subjected to chloride attack. The uncertainties of various factors such as water-cement ratio, curing temperature, age of concrete and the variation of these factors which affect chloride ion diffusion are considered. For the durability design, a probability-distribution function for each factor is obtained and a program which combines Fick's 2nd law and Monte Carlo simulation is developed. The durability design method proposed in this study considers probability of durability limit and probability of the concentration of chloride ion, so that the probability-based deterioration prediction is possible.

  • PDF

Durability Evaluation of Gangway Ring for the Articulated Bogie of High speed Railway Vehicle (고속철도차량 관절대차 갱웨이 링의 내구성 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2019
  • To improve ride quality and running stability of high speed train(HST), it is important that connection between coaches adopts the articulated bogies by using a gangway ring, unlike the conventional independent bogies assembled with car bodies. Although the gangway ring should be ensured absolute safety against passenger movement between coaches during train operation, there is still a lack of quantitative durability criteria of that. Therefore, in order to improve the passenger safety of HST, it is important to study the test requirements on durability evaluation for the ring. In this study, seven mixed loading cases were derived from the triaxial loading(vertical/lateral/longitudinal) modes. The safety factor of each component is at least 2.4 or more from the results of the finite element analysis. In addition, fatigue safety was evaluated through durability analysis from the viewpoint of strain-life design. Durability tests for the gangway ring carried out a total of 10 million cycles in 4 phases load conditions. After the durability test, the defect of each component was investigated using nondestructive testing techniques.

Statistical Analysis for Improving Durability of Porous Asphalt Mixtures (다공성 아스팔트혼합물의 내구성 향상을 위한 통계적 분석의 활용)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Han, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.283-290
    • /
    • 2020
  • Porous asphalt pavement is used widely in advanced countries to reduce traffic accidents and noise. On the other hand, it is not applied widely in Korea due to concerns about its durability. This study aims to find a statistical method to improve the durability of porous asphalt pavement. A Cantabro test was selected to test the durability. The Cantabro test was performed on an asphalt mixture made of a binder and aggregate. This test was repeated three times for each of the four groups to obtain the Cantabro loss rate. The average values of each of the four groups satisfied all the reference values. In addition, through an analysis of variance (ANOVA), it was possible to quantitatively classify test groups with differences in durability, thereby finding problems and improving the durability. Furthermore, the Pay Factor method can lead to voluntary improvements in quality, and the Pay factor can be calculated through statistical analysis of limited data. Through the Pay factor, it is possible to induce definite quality improvement of the contractor and continuously improve the durability of the porous asphalt mixture by evaluating the adequacy of the quality standard.