• 제목/요약/키워드: duplicate-diet

검색결과 23건 처리시간 0.016초

유전자 변이 대두와 옥수수 함유 사료가 참전복(Haliotis discus hannai) 치패의 성장과 체조성에 미치는 영향 (Influences of Dietary Inclusion of Genetically Modified Soybean or Corn on the Growth Performance and Body Composition of Juvenile Abalone Haliotis discus hannai)

  • 이상민;남윤권;김동수
    • 한국수산과학회지
    • /
    • 제44권5호
    • /
    • pp.560-564
    • /
    • 2011
  • Two feeding experiments were conducted to investigate the effects of dietary inclusion of genetically modified (GM) soybean and corn on the growth performance, feed utilization and body composition of juvenile abalone Haliotis discus hannai. Four isonitrogenous (31% crude protein) and isolipidic (6% crude lipid) diets (designated as nGM-soya, GM-soya, nGM-corn and GM-corn) were formulated to contain 20% non-GM (nGM) and GM soya and corn. Fifty juvenile abalone (initial body weight, 2.0 g) were distributed in each 50 L tank in a flow-through system. Each experimental diet was fed to duplicate groups of abalone to satiation once a day for 10 weeks. No effects of GM feedstuffs on survival were observed. Dietary inclusion of GM feedstuffs did not affect either growth performance or feed utilization of abalone. Body composition was not altered by the inclusion of GM feedstuffs. These results indicate that dietary inclusion of GM soybean and corn could have no effect on the growth performance and body composition of juvenile abalone. Further studies to investigate the effects of GM feedstuffs on transgenic fragment residues in ambient environments and in animals are necessary for the safe use of such ingredients in aquaculture.

In situ ruminal degradation characteristics of dry matter and crude protein from dried corn, high-protein corn, and wheat distillers grains

  • Lee, Y.H.;Ahmadi, F.;Choi, D.Y.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • 제58권9호
    • /
    • pp.33.1-33.7
    • /
    • 2016
  • Background: The continuing growth of the ethanol industry has generated large amounts of various distillers grains co-products. These are characterized by a wide variation in chemical composition and ruminal degradability. Therefore, their precise formulation in the ruminant diet requires the systematic evaluation of their degradation profiles in the rumen. Methods: Three distillers grains plus soluble co-products (DDGS) namely, corn DDGS, high-protein corn DDGS (HP-DDGS), and wheat DDGS, were subjected to an in situ trial to determine the degradation kinetics of the dry matter (DM) and crude protein (CP). Soybean meal (SBM), a feed with highly degradable protein in the rumen, was included as the fourth feed. The four feeds were incubated in duplicate at each time point in the rumen of three ruminally cannulated Hanwoo cattle for 1, 2, 4, 6, 8, 12, 24, and 48 h. Results: Wheat DDGS had the highest filterable and soluble A fraction of its DM (37.2 %), but the lowest degradable B (49.5 %; P < 0.001) and an undegradable C fraction (13.3 %; P < 0.001). The filterable and soluble A fraction of CP was greatest with wheat DDGS, intermediate with corn DDGS, and lowest with HP-DDGS and SBM; however, the undegradable C fraction of CP was the greatest with HP-DDGS (41.2 %), intermediate with corn DDGS (2.7 %), and lowest with wheat DDGS and SMB (average 4.3 %). The degradation rate of degradable B fraction ($%\;h^{-1}$) was ranked from highest to lowest as follows for 1) DM: SBM (13.3), wheat DDGS (9.1), and corn DDGS and HP-DDGS (average 5.2); 2) CP: SBM (17.6), wheat DDGS (11.6), and corn DDGS and HP-DDGS (average 4.4). The in situ effective degradability of CP, assuming a passage rate of $0.06h^{-1}$, was the highest (P < 0.001) for SBM (73.9 %) and wheat DDGS (71.2 %), intermediate for corn DDGS (42.5 %), and the lowest for HP-DDGS (28.6 %), which suggests that corn DDGS and HP-DDGS are a good source of undegraded intake protein for ruminants. Conclusions: This study provided a comparative estimate of ruminal DM and CP degradation characteristics for three DDGS co-products and SBM, which might be useful for their inclusion in the diet according to the ruminally undegraded to degraded intake protein ratio.

Effects of body weight and fiber sources on fiber digestibility and short chain fatty acid concentration in growing pigs

  • Zhao, Jinbiao;Liu, Xuzhou;Zhang, Yi;Liu, Ling;Wang, Junjun;Zhang, Shuai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권12호
    • /
    • pp.1975-1984
    • /
    • 2020
  • Objective: The study was conducted to determine the effects of body weight (BW) and fiber sources on nutrient digestibility, fiber fermentation and short chain fatty acids (SCFA) concentration in different intestinal segments of growing pigs fed high-fiber diets. Methods: Nine barrows with initial BW of 25.17±0.73 kg and 9 barrows with initial BW of 63.47±2.18 kg were allotted to a duplicate 9×2 Youden Square design with 3 dietary treatments and 2 periods. The dietary treatments were formulated with 3 different high-fiber ingredients: corn bran, sugar beet pulp, and soybean hulls, respectively. Each diet was fed to 3 barrows with different stage of BW in each period. Results: There were no differences in the apparent ileal digestibility (AID) of most nutrients between pigs at different BW stages. Pigs at 60 kg had greater (p<0.05) apparent total tract digestibility (ATTD) of total dietary fiber (TDF), soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), and had greater (p<0.05) hindgut disappearance of IDF and cellulose than pigs at 25 kg. The acetate, propionate and total SCFA concentrations in ileal digesta and feces of pigs at 60 kg were greater (p<0.05) than those of pigs at 25 kg. In addition, fiber sources affected (p<0.05) the AID of gross energy (GE), organic matter (OM), ether extract (EE), crude protein, SDF and hemicellulose, the hindgut disappearance and ATTD of dietary fiber components, the lactate and propionate concentrations in ileal digesta and the butyrate, valerate and total SCFA concentrations in feces. There were interactions (p<0.05) between BW and fiber sources on the AID of GE, OM, EE, SDF, hemicellulose, the ATTD of EE, TDF, and IDF, and the hindgut disappearance of SDF and hemicellulose. Conclusion: Increasing BW mainly improved the digestibility of dietary fiber fractions, and the dietary fiber sources influenced the digestibility of almost all the dietary nutrients in growing pigs.